Rationale: Amyloid β peptide (Aβ) triggers a series of pathological events including microglial activation, oxidative stress, and inflammation-causing neuronal death and typical pathological changes in Alzheimer's disease (AD).
Objectives: This study aimed to investigate the therapeutic effects and mechanism of bulbocodin D for AD in vivo.
Methods: In this study, Morris water maze (MWM) analysis was used to detect the cognitive ability of APP/PS1 mice after gavage with bulbocodin D for 2 months. Levels of Aβ40, Aβ42, IL-1β, and TNF-α were evaluated by ELISA. Aβ plaques and biomarkers of neuroinflammation were also investigated through histological analysis.
Results: We established that bulbocodin D significantly improved cognitive deficits in APP/PS1 transgenic mice and reduced the levels of amyloid plaque, Aβ40, and Aβ42. Bulbocodin D also reduced levels of microglial markers IbA1, GFAP, and antioxidant enzymes and reduced the products of lipid peroxidation and proinflammatory cytokines.
Conclusion: In summary, the present study provides preclinical evidence that oral bulbocodin D can reduce AD pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-021-05832-9 | DOI Listing |
Alzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: The accumulation of amyloidogenic proteins is recognized as a primary biomarker, initiator of pathology, and a potential therapeutic target for Alzheimer's disease (AD). An unbiased screening of a small molecule library was conducted to identify new chemical compounds exhibiting amyloid-dissociative properties.
Method: The ability of aryloxypropanolamine derivatives to dissociate amyloid-β (Aβ) aggregates was evaluated through in vitro assays.
Alzheimers Dement
December 2024
Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN, USA.
Background: Major contributors to AD pathogenesis include aggregates of amyloid-β (Aβ) peptides, hyperphosphorylated tau protein, and neuroinflammation. No currently approved treatment stops or significantly slows the progression of AD. Nevertheless, one class of agents that has shown promise is metal chelators.
View Article and Find Full Text PDFBehav Brain Funct
January 2025
Wenzhou Key Laboratory of Sanitary Microbiology; School of Laboratory Medicine and Life Sciences; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
Alzheimer's disease (AD) is a prevalent and progressive neurodegenerative disorder that is the leading cause of dementia. The underlying mechanisms of AD have not yet been completely explored. Neuroinflammation, an inflammatory response mediated by certain mediators, has been exhibited to play a crucial role in the pathogenesis of AD.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder worldwide, and microglia are thought to play a central role in neuroinflammatory events occurring in AD. Chemerin, an adipokine, has been implicated in inflammatory diseases and central nervous system disorders, yet its precise function on microglial response in AD remains unknown.
Methods: The APP/PS1 mice were treated with different dosages of chemerin-9 (30 and 60 µg/kg), a bioactive nonapeptide derived from chemerin, every other day for 8 weeks consecutively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!