Purpose: To compare automated versus standard of care manual processing of 2D gradient recalled echo (GRE) liver MR Elastography (MRE) in children and young adults.
Materials And Methods: 2D GRE liver MRE data from research liver MRI examinations performed as part of an autoimmune liver disease registry between March 2017 and March 2020 were analyzed retrospectively. All liver MRE data were acquired at 1.5 T with 60 Hz mechanical vibration frequency. For manual processing, two independent readers (R1, R2) traced regions of interest on scanner generated shear stiffness maps. Automated processing was performed using MREplus+ (Resoundant Inc.) using 90% (A90) and 95% (A95) confidence masks. Agreement was evaluated using intra-class correlation coefficients (ICC) and Bland-Altman analyses. Classification performance was evaluated using receiver operating characteristic curve (ROC) analyses.
Results: In 65 patients with mean age of 15.5 ± 3.8 years (range 8-23 years; 35 males) median liver shear stiffness was 2.99 kPa (mean 3.55 ± 1.69 kPa). Inter-reader agreement for manual processing was very strong (ICC = 0.99, mean bias = 0.01 kPa [95% limits of agreement (LoA): - 0.41 to 0.44 kPa]). Correlation between manual and A95 automated processing was very strong (R1: ICC = 0.988, mean bias = 0.13 kPa [95% LoA: - 0.40 to 0.68 kPa]; R2: ICC = 0.987, mean bias = 0.13 kPa [95% LoA: - 0.44 to 0.69 kPa]). Automated measurements were perfectly replicable (ICC = 1.0; mean bias = 0 kPa).
Conclusion: Liver shear stiffness values obtained using automated processing showed excellent agreement with manual processing. Automated processing of liver MRE was perfectly replicable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292210 | PMC |
http://dx.doi.org/10.1007/s00261-021-03073-0 | DOI Listing |
Cytotherapy
December 2024
Cancer Institute, University College London, London, UK. Electronic address:
The global changes from 2001 that elevated substantially modified cell therapies to the definition of "medicinal product" have been the catalyst for the dramatic expansion of the field to its current and future commercial success. Europe was the first to incorporate human somatic cells into drug legislation with the medicines directive of 2001 (2001/83/EC), which led to the development of the term "advanced therapy medicinal products" (ATMPs) to cover all substantially modified products, tissue-engineered products and somatic cells that are not substantially modified but that are used non-homologously. For convenience, I use the term "ATMPs" throughout this review.
View Article and Find Full Text PDFAdv Mater
January 2025
Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.
Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.
View Article and Find Full Text PDFSmall Methods
January 2025
Dept. Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.
The integration of Machine Learning (ML) with super-resolution microscopy represents a transformative advancement in biomedical research. Recent advances in ML, particularly deep learning (DL), have significantly enhanced image processing tasks, such as denoising and reconstruction. This review explores the growing potential of automation in super-resolution microscopy, focusing on how DL can enable autonomous imaging tasks.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Reconstructive Dentistry, UZB University Center for Dental Medicine Basel, University of Basel, 4058 Basel, Switzerland.
The technical development of implant-supported fixed dental prostheses (iFDP) initially concentrated on the computer-aided manufacturing of prosthetic restorations (CAM). Advances in information technologies have shifted the focus for optimizing digital workflows to AI-based processes for design (CAD). This pre-clinical pilot trial investigated the feasibility of the automatic design of three-unit iFDPs using CAD software (Dental Manger 2021, 3Shape; DentalCAD 3.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Phillip M. Drayer Electrical Engineering Department, Lamar University, Beaumont, TX 77705, USA.
Automated ultrasonic testing (AUT) is a critical tool for infrastructure evaluation in industries such as oil and gas, and, while skilled operators manually analyze complex AUT data, artificial intelligence (AI)-based methods show promise for automating interpretation. However, improving the reliability and effectiveness of these methods remains a significant challenge. This study employs the Segment Anything Model (SAM), a vision foundation model, to design an AI-assisted tool for weld defect detection in real-world ultrasonic B-scan images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!