Polaritons with directional in-plane propagation and ultralow losses in van der Waals (vdW) crystals promise unprecedented manipulation of light at the nanoscale. However, these polaritons present a crucial limitation: their directional propagation is intrinsically determined by the crystal structure of the host material, imposing forbidden directions of propagation. Here, we demonstrate that directional polaritons (in-plane hyperbolic phonon polaritons) in a vdW crystal (α-phase molybdenum trioxide) can be directed along forbidden directions by inducing an optical topological transition, which emerges when the slab is placed on a substrate with a given negative permittivity (4H-silicon carbide). By visualizing the transition in real space, we observe exotic polaritonic states between mutually orthogonal hyperbolic regimes, which unveil the topological origin of the transition: a gap opening in the dispersion. This work provides insights into optical topological transitions in vdW crystals, which introduce a route to direct light at the nanoscale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060020PMC
http://dx.doi.org/10.1126/sciadv.abf2690DOI Listing

Publication Analysis

Top Keywords

forbidden directions
12
topological transition
8
vdw crystals
8
light nanoscale
8
optical topological
8
polaritons
5
enabling propagation
4
propagation anisotropic
4
anisotropic polaritons
4
polaritons forbidden
4

Similar Publications

The presence in ecological communities of unfeasible species interactions, termed forbidden links, due to physiological or morphological exploitation barriers has been long debated, but little direct evidence has been found. Forbidden links are likely to make ecological communities less robust to species extinctions, stressing the need to assess their prevalence. Here, we used a dataset of plant-hummingbird interactions, coupled with a Bayesian hierarchical model, to assess the importance of exploitation barriers in determining species interactions.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Analysis of Acoustic Surface Wave Focused Unidirectional Interdigital Transducers Using Coupling-of-Mode Theory.

Micromachines (Basel)

December 2024

School of Physics and Electronic Information, Yunnan Normal University, No. 1 Yuhua Area, Chenggong District, Kunming 650500, China.

In cell or droplet separation, high acoustic wave energy of a surface acoustic wave (SAW) device is required to generate sufficient acoustic radiation force. In this paper, the electrode width-control floating electrode focused unidirectional interdigital transducer (EWC-FEFUDT) is proposed due to its enhanced focusing properties. The performance of the EWC-FEFUDT is investigated using the Coupling-of-Mode (COM) theory, and the COM parameter is extracted using the Finite Element Method (FEM).

View Article and Find Full Text PDF

The clean analysis process of Mn for industries: a comparative study on direct determination of high-concentration Mn in solution using spectrophotometry.

BMC Chem

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.

Mn is an essential cation extensively utilized in various industrial processes, including electrolytic manganese production, manganese dioxide manufacturing, and zinc processing. It also poses significant environmental challenges as a primary pollutant in Mn-containing wastewater and hazardous materials. Effective monitoring and control of Mn in these processes are vital for improving resource conversion efficiency and minimizing pollutant production.

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!