Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polymer nanoparticles and microparticles have been used primarily for drug delivery. There is now growing interest in further developing polymer-based solid cavitation agents to also enhance ultrasound imaging. We previously reported on a facile method to produce hollow poly(lactic-co-glycolic acid) (PLGA) microparticles with different diameters and degrees of porosity. Here, we investigate the cavitation response from these PLGA microparticles with both therapeutic and diagnostic ultrasound transducers. Interestingly, all formulations exhibited stable cavitation; larger porous and multicavity particles also provided inertial cavitation at elevated acoustic pressure amplitudes. These larger particles also achieved contrast enhancement comparable to that of commercially available ultrasound contrast agents, with a maximum recorded contrast-to-tissue ratio of 28 dB. Therefore, we found that multicavity PLGA microparticles respond to both therapeutic and diagnostic ultrasound and may be applied as a theranostic agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2021.02.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!