A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facilitating harmonized data quality assessments. A data quality framework for observational health research data collections with software implementations in R. | LitMetric

Background: No standards exist for the handling and reporting of data quality in health research. This work introduces a data quality framework for observational health research data collections with supporting software implementations to facilitate harmonized data quality assessments.

Methods: Developments were guided by the evaluation of an existing data quality framework and literature reviews. Functions for the computation of data quality indicators were written in R. The concept and implementations are illustrated based on data from the population-based Study of Health in Pomerania (SHIP).

Results: The data quality framework comprises 34 data quality indicators. These target four aspects of data quality: compliance with pre-specified structural and technical requirements (integrity); presence of data values (completeness); inadmissible or uncertain data values and contradictions (consistency); unexpected distributions and associations (accuracy). R functions calculate data quality metrics based on the provided study data and metadata and R Markdown reports are generated. Guidance on the concept and tools is available through a dedicated website.

Conclusions: The presented data quality framework is the first of its kind for observational health research data collections that links a formal concept to implementations in R. The framework and tools facilitate harmonized data quality assessments in pursue of transparent and reproducible research. Application scenarios comprise data quality monitoring while a study is carried out as well as performing an initial data analysis before starting substantive scientific analyses but the developments are also of relevance beyond research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019177PMC
http://dx.doi.org/10.1186/s12874-021-01252-7DOI Listing

Publication Analysis

Top Keywords

data quality
56
data
22
quality framework
20
quality
14
harmonized data
12
observational health
12
health data
12
data collections
12
quality assessments
8
framework observational
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!