Sound propagation along vertical and slanted paths through the near-ground atmosphere impacts detection and localization of low-altitude sound sources, such as small unmanned aerial vehicles, from ground-based microphone arrays. This article experimentally investigates the amplitude and phase fluctuations of acoustic signals propagating along such paths. The experiment involved nine microphones on three horizontal booms mounted at different heights to a 135-m meteorological tower at the National Wind Technology Center (Boulder, CO). A ground-based loudspeaker was placed at the base of the tower for vertical propagation or 56 m from the base of the tower for slanted propagation. Phasor scatterplots qualitatively characterize the amplitude and phase fluctuations of the received signals during different meteorological regimes. The measurements are also compared to a theory describing the log-amplitude and phase variances based on the spectrum of shear and buoyancy driven turbulence near the ground. Generally, the theory correctly predicts the measured log-amplitude variances, which are affected primarily by small-scale, isotropic turbulent eddies. However, the theory overpredicts the measured phase variances, which are affected primarily by large-scale, anisotropic, buoyantly driven eddies. Ground blocking of these large eddies likely explains the overprediction.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0003820DOI Listing

Publication Analysis

Top Keywords

amplitude phase
12
phase fluctuations
12
vertical slanted
8
sound propagation
8
near-ground atmosphere
8
base tower
8
phase variances
8
phase
5
slanted sound
4
propagation
4

Similar Publications

Crystallography of the litharge to massicot phase transformation from neutron powder diffraction data.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

CSIRO Division of Mineral Products, Port Melbourne, Victoria, Australia.

The crystallographic phase change from tetragonal litharge (α-PbO; P4/nmm) to orthorhombic massicot (β-PbO; Pbcm) has been studied by full-matrix Rietveld analysis of high-temperature neutron powder diffraction data collected in equal steps from ambient temperature up to 925 K and back down to 350 K. The phase transformation takes place between 850 and 925 K, with the coexisting phases having equal abundance by weight at 885 K. The product massicot remains metastable on cooling to near ambient temperature.

View Article and Find Full Text PDF

The integrated modulation of radiation and scattering provides an unprecedented opportunity to reduce the number of electromagnetic (EM) apertures in the platform while simultaneously enhancing communication and stealth performance. Nevertheless, achieving full-polarization, arbitrary amplitude, and phase modulation of radiation scattering remains a challenge. In this paper, a strategy that realizes space-time coding of radiation scattering within the same frequency band, which enables the simultaneous and independent modulation of amplitude and phase, is proposed.

View Article and Find Full Text PDF

Adaptive mode-selective multiplexers offer the potential to control the modal content within multimode fibers for space division multiplexing (SDM). To such an end, spatial light modulators allow programmable control over the phase, amplitude, and polarization of optical wavefronts. One of the major challenges is to precisely match the manipulated beam to the waveguide modes in the multimode fiber.

View Article and Find Full Text PDF

Generation of orthonormal optical fields using phase-only spatial light modulators (SLM) or amplitude-only digital micromirror devices (DMD) is an active and diverse research field, with a wide variety of applications. However, these approaches typically come with limited accuracy, and a significant loss in resolution and intensity. We present a different approach: we construct orthonormal fields that can be generated exactly on phase-only hardware without loss of resolution or intensity.

View Article and Find Full Text PDF

Terahertz modulation technology based on programmable metasurfaces can respond in real time to external signals or environmental changes, enabling flexible and adaptive control of terahertz waves. This technology demonstrates significant potential and importance across various fields, including communication, imaging, scientific research, security monitoring, and industrial applications. This paper proposes a terahertz programmable metasurface based on solid-state plasma, utilizing solid-state plasma devices to achieve dynamic control of properties such as the amplitude and phase of terahertz waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!