Quantitative measure of memory loss in complex spatiotemporal systems.

Chaos

Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA.

Published: March 2021

History dependence of the evolution of complex systems plays an important role in forecasting. The precision of the predictions declines as the memory of the systems is lost. We propose a simple method for assessing the rate of memory loss that can be applied to experimental data observed in any metric space X. This rate indicates how fast the future states become independent of the initial condition. Under certain regularity conditions on the invariant measure of the dynamical system, we prove that our method provides an upper bound on the mixing rate of the system. This rate can be used to infer the longest time scale on which the predictions are still meaningful. We employ our method to analyze the memory loss of a slowly sheared granular system with a small inertial number I. We show that, even if I is kept fixed, the rate of memory loss depends erratically on the shear rate. Our study suggests the presence of bifurcations at which the rate of memory loss increases with the shear rate, while it decreases away from these points. We also find that the rate of memory loss is closely related to the frequency of the sudden transitions of the force network. Moreover, the rate of memory loss is also well correlated with the loss of correlation of shear stress measured at the system scale. Thus, we have established a direct link between the evolution of force networks and the macroscopic properties of the considered system.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0033419DOI Listing

Publication Analysis

Top Keywords

memory loss
28
rate memory
20
rate
10
memory
8
loss
8
shear rate
8
system
5
quantitative measure
4
measure memory
4
loss complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!