Well-dispersed composites of polymer and nanorods have many emerging applications and, therefore, are an important area of research. Polymer reference interaction site model (PRISM) theory and molecular dynamics simulations have become powerful tools in the study of the structure and phase behavior of polymer nanocomposites. In this work, we employ both PRISM theory and molecular dynamics simulations to determine the structure and spinodal phase diagram of 1% volume fraction of nanorods in a polymer melt. We make quantitative comparisons between the phase diagrams, which are reported as a function of nanorod aspect ratio and polymer-nanorod interactions. We find that both PRISM theory and molecular dynamics simulations predict the formation of contact aggregates at low polymer-nanorod attraction strength (γ) and bridged aggregates at high polymer-nanorod attraction strength. They predict an entropic depletion-driven phase separation at low γ and a bridging-driven spinodal phase separation at high γ. The polymer and nanorods are found to form stable composites at intermediate values of the polymer-nanorod attraction strength. The fall of the bridging boundary and the gradual rise of the depletion boundary with the nanorod aspect ratio are predicted by both PRISM theory and molecular dynamics simulations. Hence, the miscible region narrows with increasing aspect ratio. The depletion boundaries predicted by theory and simulation are quite close. However, the respective bridging boundaries present a significant quantitative difference. Therefore, we find that theory and simulations qualitatively complement each other and display quantitative differences.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0038186DOI Listing

Publication Analysis

Top Keywords

prism theory
20
theory molecular
20
molecular dynamics
20
dynamics simulations
20
aspect ratio
12
polymer-nanorod attraction
12
attraction strength
12
phase behavior
8
polymer nanorods
8
spinodal phase
8

Similar Publications

Forward modeling the magnetic effects of an inferred source is the basis of magnetic anomaly inversion for estimating subsurface magnetization parameters. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the magnetic potential, anomaly, and gradient components of a cylindrical prism element. Relative to previous studies, it quantifies for the first time the magnetic gradient components, enabling their applications in the interpretation of cylindrical bodies.

View Article and Find Full Text PDF

Metal-organic framework (MOF)-derived transition metal compounds and their composites have attracted great interest for applications in energy conversion and storage. In this work, hexagonal micro-prisms of Ni-doped CoTiO composited with amorphous carbon (NiCTO/C) were synthesized using Ti-Co-based MOFs as precursors. The experimental results indicate the substitutional doping of Ni for Co in CoTiO (CTO), leading to improved conductivity, as further confirmed by density functional theory calculations.

View Article and Find Full Text PDF

Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.

View Article and Find Full Text PDF

An ultrasensitive angular interrogation metasurface sensor based on the TE mode surface lattice resonance.

Microsyst Nanoeng

January 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, 100871, PR China.

The localized surface plasmon resonance metasurface is a research hotspot in the sensing field since it can enhance the light-matter interaction in the nanoscale, but the wavelength sensitivity is far from comparable with that of prism-coupled surface plasmon polariton (SPP). Herein, we propose and demonstrate an ultrasensitive angular interrogation sensor based on the transverse electric mode surface lattice resonance (SLR) mechanism in an all-metal metasurface. In theory, we derive the sensitivity function in detail and emphasize the refraction effect at the air-solution interface, which influences the SLR position and improves the sensitivity performance greatly in the wide-angle.

View Article and Find Full Text PDF

Temperature, violent crime, climate change, and vulnerability factors in 44 United States cities.

Environ Int

January 2025

School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA; Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, 145 Anam-ro, Anam-dong 3-ga, Seongbuk-gu, Seoul 02841, South Korea.

Biological and psychological theories suggest complex impacts of heat on aggression and violence. Most previous studies considered temporal intervals of months to years and assumed linear associations. Evidence is needed on daily impacts of temperature on crime, applying non-linear models across different locations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!