Mechanical spectral hole burning (MSHB) has been used to investigate the nonlinear dynamics in polymers, ranging from melts, solutions, block co-polymers, and glasses. MSHB was developed as an analog to the dielectric spectral hole burning method, which is not readily applicable in polymers due to weak dielectric response. While similar holes were observed in both mechanical and dielectric hole burning, the interpretations were different. In the latter case, it has been argued that the holes are related to dynamic heterogeneity as related to an increase in the local temperature of molecular sub-ensembles (spatial heterogeneity), while in the former case, the holes have been related to the type of dynamics (rubbery, Rouse, etc.). Recent work from our laboratories used MSHB to investigate glassy poly(methyl methacrylate) and showed evidence of hole burning and supported the hypothesis that the origin of holes was related to dynamic heterogeneity as evidenced by the holes being developed near the strong β-relaxation in PMMA. In this work, MSHB is used to study polycarbonate, which has a weak β-relaxation, and the results are compared with those observed in PMMA. We observe that the polycarbonate exhibits weak holes and the nature of the holes with a change in pump amplitude and frequency is different than observed in PMMA. These results support the hypothesis that the hole burning observed in amorphous polymers below the glass transition temperature is related to the strength of the β-transition, which, in turn, is related to molecular level heterogeneity in the material dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0045589DOI Listing

Publication Analysis

Top Keywords

hole burning
24
spectral hole
12
mechanical spectral
8
weak β-relaxation
8
mshb investigate
8
holes dynamic
8
dynamic heterogeneity
8
observed pmma
8
holes
7
hole
6

Similar Publications

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.

View Article and Find Full Text PDF

Herein, we have investigated the effect of microhydration on the secondary structure of a capped dipeptide Boc-DPro-Gly-NHBn-OMe (Boc = tert-butyloxycarbonyl, Bn = Benzyl), i.e., Pro-Gly (PG) with a single H2O molecule using gas-phase laser spectroscopy combined with quantum chemistry calculations.

View Article and Find Full Text PDF

Retinal protonated Schiff base (RPSB), found in its all-trans conformer in Bacteriorhodopsin, undergoes barrier-controlled isomerization upon photoabsorption through polyene chain torsion. The effects of the protein environment on the active vibrations during photoabsorption and their redistribution are still not understood. This paper reports on femtosecond time-resolved action-absorption measurements of cryogenically cooled gas-phase all-trans RPSB, which exhibit two coherent vibrational oscillations, 167(14) cm and 117(1) cm , of the first excited state with dephasing times of ps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!