Aging is associated with a decline in the quality of biological functions. Among the aging processes, reproductive aging is a critical process because of its intergenerational effects. However, the mechanisms underlying reproductive aging remain largely unknown. Female reproductive aging is the primary reason for limited fertility in mammals. Therefore, we attempted to investigate a modulator that can control female reproductive aging using a model. In the present study, we examined the role of nicotinamide (NAM) in oocyte quality and offspring development. The levels of reactive oxygen species (ROS) and oxidative stress responses in aged oocytes, embryonic lethality, and developmental growth of the offspring were examined with maternal NAM supplementation. Supplementation with NAM improved oocyte quality, decreased embryonic lethality, and promoted germ cell apoptosis. Furthermore, NAM supplementation in aged mothers reduced ROS accumulation and improved mitochondrial function in oocytes. Consequently, the developmental growth and motility of offspring were improved. These findings suggest that NAM supplementation improves the health of the offspring produced by aged mothers through improved mitochondrial function. Taken together, our results imply that NAM supplementation in the aged mother improves oocyte quality and protects offspring by modulating mitochondrial function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066965 | PMC |
http://dx.doi.org/10.3390/antiox10040519 | DOI Listing |
BMC Mol Cell Biol
January 2025
Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.
View Article and Find Full Text PDFAging Cell
January 2025
State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
With advancing age, significant changes occur in the female reproductive system, the most notable of which is the decline in oocyte quality, a key factor affecting female fertility. However, the mechanisms underlying oocyte aging remain poorly understood. In this study, we obtained oocytes from aged and young female mice and performed single-cell transcriptome sequencing, comparing our findings with existing proteomic analyses.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD(H)) and its metabolites function as crucial regulators of physiological processes, allowing cells to adapt to environmental changes such as nutritional deficiencies, genotoxic factors, disruptions in circadian rhythms, infections, inflammation, and exogenous substances. Here, we investigated whether elevated NAD(H) levels in oocytes enhance their quality and improve developmental competence following in vitro fertilization (IVF). Bovine cumulus-oocyte complexes (COCs) were matured in a culture medium supplemented with 0-100 μM nicotinamide mononucleotide (NMN), a precursor of NAD(H).
View Article and Find Full Text PDFReprod Toxicol
December 2024
Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) are synthetic perfluorinated compounds known for their persistence in the environment and reproduction toxicity. PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have been identified in the follicular fluid of infertile women. However, the specific of PFOA and PFOS mixture on oocyte quality and female fertility remain unclear.
View Article and Find Full Text PDFTheriogenology
December 2024
College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!