A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Intelligence Techniques for Prostate Cancer Detection through Dual-Channel Tissue Feature Engineering. | LitMetric

The optimal diagnostic and treatment strategies for prostate cancer (PCa) are constantly changing. Given the importance of accurate diagnosis, texture analysis of stained prostate tissues is important for automatic PCa detection. We used artificial intelligence (AI) techniques to classify dual-channel tissue features extracted from Hematoxylin and Eosin (H&E) tissue images, respectively. Tissue feature engineering was performed to extract first-order statistic (FOS)-based textural features from each stained channel, and cancer classification between benign and malignant was carried out based on important features. Recursive feature elimination (RFE) and one-way analysis of variance (ANOVA) methods were used to identify significant features, which provided the best five features out of the extracted six features. The AI techniques used in this study for binary classification (benign vs. malignant and low-grade vs. high-grade) were support vector machine (SVM), logistic regression (LR), bagging tree, boosting tree, and dual-channel bidirectional long short-term memory (DC-BiLSTM) network. Further, a comparative analysis was carried out between the AI algorithms. Two different datasets were used for PCa classification. Out of these, the first dataset (private) was used for training and testing the AI models and the second dataset (public) was used only for testing to evaluate model performance. The automatic AI classification system performed well and showed satisfactory results according to the hypothesis of this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036750PMC
http://dx.doi.org/10.3390/cancers13071524DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence techniques
8
prostate cancer
8
dual-channel tissue
8
tissue feature
8
feature engineering
8
features extracted
8
classification benign
8
benign malignant
8
features
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!