Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, we present the synthesis and anion binding studies of a family of homologous molecular receptors - based on a DITIPIRAM (8-propyldithieno-[3,2-b:2',3'-e]-pyridine-3,5-di-amine) platform decorated with various urea -phenyl substituents (NO, F, CF, and Me). Solution, X-ray, and DFT studies reveal that the presented host-guest system offers a convergent array of four urea NH hydrogen bond donors to anions allowing the formation of remarkably stable complexes with carboxylates (acetate, benzoate) and chloride anions in solution, even in competitive solvent mixtures such as DMSO-/HO 99.5/0.5 (/) and DMSO-/MeOH- 9:1 (/). The most effective derivatives among the series turned out to be receptors and containing electron-withdrawing F- and -CF-substituents, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004752 | PMC |
http://dx.doi.org/10.3390/molecules26061788 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!