Recent challenges in biomedical diagnostics show that the development of rapid affinity sensors is very important issue. Therefore, in this review we are aiming to outline the most important directions of affinity sensors where polymer-based semiconducting materials are applied. Progress in formation and development of such materials is overviewed and discussed. Some applicability aspects of conducting polymers in the design of affinity sensors are presented. The main attention is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline, polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some other polymers and inorganic materials that are suitable for molecular imprinting technology are also overviewed. Polymerization techniques, which are the most suitable for the development of composite structures suitable for affinity sensors are presented. Analytical signal transduction methods applied in affinity sensors based on polymer-based semiconducting materials are discussed. In this review the most attention is focused on the development and application of molecularly imprinted polymer-based structures, which can replace antibodies, receptors, and many others expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as "stealth coatings" in the future implantable affinity-sensors. Some new perspectives and trends in analytical application of polymer-based semiconducting materials are highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004762 | PMC |
http://dx.doi.org/10.3390/polym13060974 | DOI Listing |
Mikrochim Acta
January 2025
College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.
View Article and Find Full Text PDFTalanta
January 2025
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Fumonisin B1 (FB1) is a highly toxic fungal toxin that poses a serious threat to human health. Accordingly, realizing highly sensitive detection of FB1 is essential to safeguard people's health. In this study, a photoelectrochemical (PEC) aptamer sensor was successfully constructed with KPWO/CdS/CoS as the substrate material and with AgBiS as the aptamer marker.
View Article and Find Full Text PDFBioessays
January 2025
Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China.
Bacteria have a significant impact on human production and life, endangering human life and health, so rapid detection of infectious agents is essential to improve human health. Aptamers, which are pieces of oligonucleotides (DNA or RNA) have been applied to biosensors for bacteria detection due to their high affinity, selectivity, robust chemical stability, and their compatibility with various signal amplification and signal transduction mechanisms. In this review, we summarize the different bacterial aptamers selected in recent years using SELEX technology and discuss the differences in optical and electrochemical bacterial aptamer sensors.
View Article and Find Full Text PDFACS Sens
January 2025
Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju 52851, Republic of Korea.
Two-dimensional SnSe (X = 1, 2) has emerged as a promising candidate for a NO chemiresistive sensor due to a remarkable affinity to NO gas adsorption. Although their gas sensing mechanism primarily relies on direct charge transfer, the underlying mechanisms of SnSe and SnSe remain unclear, despite various reported successes in phase engineering of SnSe. Here, we investigate phase engineering of SnSe in a hydrothermal route via 1-dodecanethiol (1-DDT), which served as a phase stabilizer, and comprehensively demonstrate phase-dependent NO detection properties.
View Article and Find Full Text PDFACS Nano
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States.
Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!