The current work aimed to synthesize selenium and zinc nanoparticles using the aqueous extract of as a valuable medicinal plant. The prepared nanoparticles were characterized by TEM, zeta potential, and changes in the phytochemical constituents. Hence, the phenolic, flavonoid, and tannin contents were reduced in the case of the prepared samples of nanoparticles than the original values in the aqueous extract. The prepared extract of and its selenium and zinc nanoparticles showed high potency as antioxidant agents as a result of the DPPH assay. The samples were assessed as anticancer agents against six tumor cells and a normal lung fibroblast (WI-38) cell line. The selenium nanoparticles of extract revealed very strong cytotoxicity against HePG-2 cells (inhibitory concentration (IC) = 7.56 ± 0.6 µg/mL), HCT-116 cells (IC = 10.02 ± 0.9 µg/mL), and HeLa cells (IC = 9.23 ± 0.8 µg/mL). The samples were evaluated as antimicrobial agents against bacterial and fungal strains. Thus, selenium nanoparticles showed potent activities against Gram-negative strains (, , , and ), Gram-positive strains , and ), and the fungal strain . In conclusion, the preparation of nanoparticles of either selenium or zinc is crucial for improved biological characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005055 | PMC |
http://dx.doi.org/10.3390/biom11030470 | DOI Listing |
Alzheimers Dement
December 2024
Illinois Institute of Technology, Chicago, IL, USA.
Background: Elevated iron in brain is a source of free radicals that causes oxidative stress which has been linked to neuropathologies and cognitive impairment among older adults. The aim of this study was to investigate the association of iron levels with transverse relaxation rate, R, and white matter hyperintensities (WMH), independent of the effects of other metals and age-related neuropathologies.
Method: Cerebral hemispheres from 437 older adults participating in the Rush Memory and Aging Project study (Table 1) were imaged ex-vivo using 3T MRI scanners.
Aust Dent J
January 2025
Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Background: Chronic periodontitis is one of the most common inflammatory diseases worldwide. Micronutrients play a significant impact on health and periodontal disease progression. However, there is still a lack of conclusive studies confirming the causal association of micronutrients with chronic periodontitis.
View Article and Find Full Text PDFAMB Express
January 2025
Department of Biology, College of Science & Arts at Khulis, University of Jeddah, Jeddah, 21959, Saudi Arabia.
Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
Liver cancer is globally the most frequent fatal malignancy, and its identification is critical for making clinical decisions about treatment options. Pathological diagnostics and contemporary imaging technologies provide insufficient information for tumor identification. Hydrogen peroxide (HO), an emerging biomarker is a powerful oxidant found in the tumor microenvironment, and stimulates the invasion, proliferation, and metastasis of liver cancer cells.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Davis Pharmaceutical Laboratories, 121, industrial triangle area, kahuta road, Islamabad.
This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!