SIRT1 Expression and Regulation in the Primate Testis.

Int J Mol Sci

Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany.

Published: March 2021

The epigenetic mechanisms controlling germ cell development and differentiation are still not well understood. Sirtuin-1 (SIRT1) is a nicotinamide adenosine dinucleotide (NAD)-dependent histone deacetylase and belongs to the sirtuin family of deacetylases. It catalyzes the removal of acetyl groups from a number of protein substrates. Some studies reported a role of SIRT1 in the central and peripheral regulation of reproduction in various non-primate species. However, testicular SIRT1 expression and its possible role in the testis have not been analyzed in primates. Here, we document expression of SIRT1 in testes of different primates and some non-primate species. SIRT1 is expressed mainly in the cells of seminiferous tubules, particularly in germ cells. The majority of SIRT1-positive germ cells were in the meiotic and postmeiotic phase of differentiation. However, SIRT1 expression was also observed in selected premeiotic germ cells, i.e., spermatogonia. SIRT1 co-localized in spermatogonia with irisin, an endocrine factor specifically expressed in primate spermatogonia. In marmoset testicular explant cultures, transcript levels are upregulated by the addition of irisin as compared to untreated controls explants. Rhesus macaques are seasonal breeders with high testicular activity in winter and low testicular activity in summer. Of note, mRNA and SIRT1 protein expression are changed between nonbreeding (low spermatogenesis) and breeding (high spermatogenesis) season. Our data suggest that SIRT1 is a relevant factor for the regulation of spermatogenesis in primates. Further mechanistic studies are required to better understand the role of SIRT1 during spermatogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004242PMC
http://dx.doi.org/10.3390/ijms22063207DOI Listing

Publication Analysis

Top Keywords

sirt1 expression
12
germ cells
12
sirt1
11
role sirt1
8
non-primate species
8
testicular activity
8
expression regulation
4
regulation primate
4
primate testis
4
testis epigenetic
4

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: The mammalian NAD-dependent deacetylase sirtuin-1 family (named also silent information regulator or SIRT family, where NAD stands for "nicotinamide adenine dinucleotide" (NAD)) appears to have a dual role in several human cancers by modulating cell proliferation and death. This study examines how SIRT1 protein levels correlate with clinicopathological characteristics and survival outcomes in patients with breast cancer.

Methods: A total of 407 BC formalin-fixed paraffin-embedded (FFPE) samples were collected from King Abdulaziz University Hospital, Saudi Arabia.

View Article and Find Full Text PDF

Supplementation with N-Acetyl-L-cysteine during in vitro maturation improves goat oocyte developmental competence by regulating oxidative stress.

Theriogenology

January 2025

Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China. Electronic address:

Oocyte quality can affect mammal fertilization rate, early embryonic development, pregnancy maintenance, and fetal development. Oxidative stress induced by reactive oxygen species (ROS) is one of the most important causes of poor oocyte maturation in vitro. To reduce the degree of cellular damage caused by ROS, supplementation with the antioxidant N-Acetyl-L-cysteine (NAC) serves as an effective pathway to alleviate glutathione (GSH) depletion during oxidative stress.

View Article and Find Full Text PDF

Targeting p21-Positive Senescent Chondrocytes via IL-6R/JAK2 Inhibition to Alleviate Osteoarthritis.

Adv Sci (Weinh)

January 2025

Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.

Osteoarthritis (OA) is an age-related degenerative joint disease, prominently influenced by the pro-inflammatory cytokine interleukin-6 (IL-6). Although elevated IL-6 levels in joint fluid are well-documented, the uneven cartilage degeneration observed in knee OA patients suggests additional underlying mechanisms. This study investigates the role of interleukin-6 receptor (IL-6R) in mediating IL-6 signaling and its contribution to OA progression.

View Article and Find Full Text PDF

Extensive uses of silver nanoparticles (Ag NPs) in different industries result in exposure to these nanoparticle imperatives in our daily lives. Resveratrol is found in many plants as a natural compound. The present study aimed to estimate the renal toxic effects of Ag NPs in adult male albino rats and the underlying relevant mechanisms while studying the possible role of resveratrol in ameliorating these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!