Accurate knowledge of the dielectric properties of biological tissues is important in dosimetry studies and for medical diagnostic, monitoring and therapeutic technologies. In particular, the dielectric properties of the heart are used in numerical simulations of radiofrequency and microwave heart ablation. In one recent study, it was demonstrated that the dielectric properties of different components of the heart can vary considerably, contrary to previous literature that treated the heart as a homogeneous organ with measurements that ignored the anatomical location. Therefore, in this study, we record and report the dielectric properties of the heart as a heterogeneous organ. We measured the dielectric properties at different locations inside and outside of the heart over the 500 MHz to 20 GHz frequency range. Different parts of the heart were identified based on the anatomy of the heart and their function; they include the epicardium, endocardium, myocardium, exterior and interior surfaces of atrial appendage, and the luminal surface of the great vessels. The measured dielectric properties for each part of the heart are reported at both a single frequency (2.4 GHz), which is of interest in microwave medical applications, and as parameters of a broadband Debye model. The results show that in terms of dielectric properties, different parts of the heart should not be considered the same, with more than 25% difference in dielectric properties between some parts. The specific Debye models and single frequency dielectric properties from this study can be used to develop more detailed models of the heart to be used in electromagnetic modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002248 | PMC |
http://dx.doi.org/10.3390/diagnostics11030531 | DOI Listing |
Environ Res
January 2025
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:
Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).
View Article and Find Full Text PDFNat Commun
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, China.
Dielectric capacitors are vital for modern power and electronic systems, and accurate assessment of their dielectric properties is paramount. However, in many prevailing reports, the fringing effect near electrodes and parasitic capacitance in the test circuit were often neglected, leading to overrated dielectric performances. Here, the serious impacts of the fringing effect and parasitic capacitance are investigated both experimentally and theoretically on different dielectrics including AlO, SrTiO, etc.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Photonics and of Nanotechnologies- National Researcher Council (IFN-CNR), LNESS Laboratory, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy.
Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).
View Article and Find Full Text PDFAdv Mater
January 2025
Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.
In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!