Characteristics of Yield Parameters and Anthocyanin Accumulation under Water Deficit Stress.

Plants (Basel)

Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.

Published: March 2021

Plants exposed to drought stress conditions often increase the synthesis of anthocyanins-natural plant pigments and antioxidants. However, water deficit (WD) often causes significant yield loss. The aim of our study was to evaluate the productivity as well as the anthocyanin content and composition of berries from cultivated "Rojan" and hybrid No. 17 plants (seedlings) grown under WD. The plants were grown in an unheated greenhouse and fully irrigated (control) or irrigated at 50% and 25%. The number of berries per plant and the berry weight were evaluated every 4 days. The anthocyanin content and composition of berries were evaluated with the same periodicity using HPLC. The effect of WD on the yield parameters of two evaluated genotypes differed depending on the harvest time. The cumulative yield of plants under WD was not less than that of the control plants for 20-24 days after the start of the experiment. Additionally, berries accumulated 36-56% (1.5-2.3 times, depending on the harvest time) more anthocyanins compared with fully irrigated plants. Our data show that slight or moderate WD at a stable air temperature of about 20 °C positively affected the biosynthesis of anthocyanins and the yield of berries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001689PMC
http://dx.doi.org/10.3390/plants10030557DOI Listing

Publication Analysis

Top Keywords

yield parameters
8
water deficit
8
anthocyanin content
8
content composition
8
composition berries
8
fully irrigated
8
depending harvest
8
harvest time
8
plants
6
berries
5

Similar Publications

Sustainable biomethane production from waste biomass: challenges associated with process optimization in improving the yield.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.

Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.

View Article and Find Full Text PDF

Monolayer assembly of charged colloidal particles at liquid interfaces opens a new avenue for advancing the additive manufacturing of thin film materials and devices with tailored properties. In this study, we investigated the dynamics of electrosprayed colloidal particles at curved droplet interfaces through a combination of physics-based computational simulations and machine learning. We employed a novel mesh-constrained Brownian dynamics (BD) algorithm coupled with Ansys® electric field simulations to model the transport and assembly of charged particles on a non-spherical droplet surface.

View Article and Find Full Text PDF

Rubrene is one of the leading organic semiconductors in scientific and industrial research, showing good conductivities and utilities in devices such as organic field-effect transistors. In these applications, the rubrene crystals often contact ionic liquids and other materials. Consequently, their surface properties and interfacial interactions influence the device's performance.

View Article and Find Full Text PDF

Lignosulfonate as a versatile regulator for the mediated synthesis of Ag@AgCl nanocubes.

Nanoscale

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, P. R. China.

The remarkable catalytic activity, optical properties, and electrochemical behavior of nanomaterials based on noble metals (NM) are profoundly influenced by their physical characteristics, including particle size, morphology, and crystal structure. Effective regulation of these parameters necessitates a refined methodology. Lignin, a natural aromatic compound abundant in hydroxyl, carbonyl, carboxyl, and sulfonic acid groups, has emerged as an eco-friendly surfactant, reducing agent, and dispersant, offering the potential to precisely control the particle size and morphology of NM-based nanomaterials.

View Article and Find Full Text PDF

Effects of leaf scorch on photosynthetic characteristics, fruit yield, and quality of walnuts.

Physiol Mol Biol Plants

December 2024

College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Xinjiang, 830052 China.

The consequences of walnut ( L.) leaf scorch (WLS) were studied using the cultivated varieties, Wen185 ( 'Wen 185') and Xinxin2 ( 'Xinxin2') in the Aksu region, Xinjiang, China. Photosynthetic parameters and indoor chemical analysis were used to determine the variations in photosynthetic characteristics, osmotic regulatory substances, antioxidant enzyme activities, and changes in fruit yield and quality between diseased and healthy leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!