Nanofibrillated Cellulose-Based Aerogels Functionalized with Tajuva () Heartwood Extract.

Polymers (Basel)

Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPGCEM), Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, 96010-610 Pelotas, Brazil.

Published: March 2021

Aerogels are 3-D nanostructures of non-fluid colloidal interconnected porous networks consisting of loosely packed bonded particles that are expanded throughout their volume by gas and exhibit ultra-low density and high specific surface area. Cellulose-based aerogels can be obtained from hydrogels through a drying process, replacing the solvent (water) with air and keeping the pristine three-dimensional arrangement. In this work, hybrid cellulose-based aerogels were produced and their potential for use as dressings was assessed. Nanofibrilated cellulose (NFC) hydrogels were produced by a co-grinding process in a stone micronizer using a kraft cellulosic pulp and a phenolic extract from (Tajuva) heartwood. NFC-based aerogels were produced by freeze followed by lyophilization, in a way that the Tajuva extract acted as a functionalizing agent. The obtained aerogels showed high porosity (ranging from 97% to 99%) and low density (ranging from 0.025 to 0.040 g·cm), as well a typical network and sheet-like structure with 100 to 300 μm pores, which yielded compressive strengths ranging from 60 to 340 kPa. The reached antibacterial and antioxidant activities, percentage of inhibitions and water uptakes suggest that the aerogels can be used as fluid absorbers. Additionally, the immobilization of the Tajuva extract indicates the potential for dentistry applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002037PMC
http://dx.doi.org/10.3390/polym13060908DOI Listing

Publication Analysis

Top Keywords

cellulose-based aerogels
12
tajuva heartwood
8
aerogels produced
8
tajuva extract
8
aerogels
7
nanofibrillated cellulose-based
4
aerogels functionalized
4
tajuva
4
functionalized tajuva
4
extract
4

Similar Publications

Anisotropic nanocellulose-based aerogels for radiative cooling.

Int J Biol Macromol

January 2025

College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China. Electronic address:

To this day, energy conservation, emission reduction, and environmental protection continue to be goals pursued by humanity. Passive radiation cooling, as a zero-consumption refrigeration technology, offers substantial opportunities for reducing global energy consumption and carbon dioxide emissions. It is of great significance to develop high-performance passive radiation cooling materials from sustainable materials.

View Article and Find Full Text PDF

Robust fluorinated cellulose composite aerogels incorporating radiative cooling and thermal insulation for regionally adaptable building thermal management.

Int J Biol Macromol

December 2024

Jiangsu Optoelectronic Functional Materials Engineering Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:

Passive radiative cooling (PRC) is an emerging sustainable technology that plays a key role for achieving the goal of carbon neutrality. However, several challenges remain for PRC materials in their practical application in building thermal management, including overcooling problems and unsatisfactory cooling efficiency caused by solar absorption and parasitic heat gains. In this work, fluorinated cellulose-based composite aerogels (FCCA) integrating thermal insulation and PRC were developed by a facile manufacturing strategy that combined phase separation and freeze-drying.

View Article and Find Full Text PDF

Cellulose based aerogels have recently gained a lot of interest in the past few years because of their sustainability, biocompatibility, biodegradability, and biosafety. Cellulose is an excellent raw material for the preparation of aerogels because of its advantages of strong renewability, low cost, good biocompatibility and easy degradation. The nanoscale cellulose can be prepared by physical, chemical and biological enzyme methods for the preparation of nanocellulose based aerogels (NCBAs).

View Article and Find Full Text PDF

High Mechanical Cellulose-Based Aerogel Induced by Fe at Ambient Temperature and Pressure.

ACS Appl Mater Interfaces

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

Nanocellulose aerogels are usually produced by methods such as freeze-drying or critical point drying, which have the disadvantages of high equipment requirements and high energy consumption. In this study, the Fe-containing ethanol bath was employed to dissolve and replace ice crystals in the prefrozen precursors of cellulose-based aerogels. The method achieved both solvent substitution and metal ion complexation and successfully prepared nanocellulose aerogels with a total solid concentration of 2.

View Article and Find Full Text PDF

Hemp cellulose-based aerogels and cryogels: From waste biomass to sustainable absorbent pads for food preservation.

Carbohydr Polym

January 2025

Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain. Electronic address:

Article Synopsis
  • This study explores a circular economy approach using hemp stems and rice straw to create sustainable alternatives for plastic absorbent pads in food packaging.
  • The active material, made from hemp cellulose and a bioactive extract from rice straw, not only reduces plastic waste but also improves food preservation.
  • The developed cryogels demonstrated favorable properties for meat preservation, with a careful balance of bioactive extract concentrations to optimize antioxidant benefits without inducing negative reactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!