Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development.

Cancers (Basel)

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.

Published: March 2021

MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a post-transcriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002357PMC
http://dx.doi.org/10.3390/cancers13061333DOI Listing

Publication Analysis

Top Keywords

microrna clusters
16
clusters families
16
histone modifications
8
microrna
6
clusters
5
families
5
epigenetic regulation
4
regulation microrna
4
families tumor
4
tumor development
4

Similar Publications

MicroRNA Biomarkers and Host Response Pathways in Severe Pulmonary Hemorrhagic Syndrome due to Leptospirosis: A Multi-Omics Study.

J Infect

January 2025

Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand; Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center for Critical Care Nephrology, The CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Academy of Science, Royal Society of Thailand, Bangkok, Thailand. Electronic address:

Background: Severe pulmonary hemorrhagic syndrome (SPHS) remains a fatal complication of leptospirosis with poorly understood mechanisms and an urgent need for effective biomarkers.

Methods: A nested case-control analysis was conducted using blood specimens from two previous Thai leptospirosis cohorts. Candidate microRNAs were initially discovered through a global profiling of 798 serum microRNAs in five SPHS and seven non-SPHS patients, and then validated using real-time polymerase chain reactions in 168 patients.

View Article and Find Full Text PDF

Cell-Type Specific miRNA Regulatory Network Responses to ABA Stress Revealed by Time Series Transcriptional Atlases in Arabidopsis.

Adv Sci (Weinh)

January 2025

School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.

In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late.

View Article and Find Full Text PDF

Little brown bats () cluster in hibernacula sites over winter, in which they use metabolic rate depression (MRD) to facilitate entrance and exit of hibernation. This study used small RNA sequencing and bioinformatic analyses to identify differentially regulated microRNAs (miRNAs) and to predict their downstream effects on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms in the skeletal muscle of torpid as compared to euthermic controls. We observed a subset of ten miRNAs whose expression changed during hibernation, with predicted functional roles linked to cell cycle processes, downregulation of protein degradation via ubiquitin-mediated proteolysis, downregulation of signaling pathways, including MAPK, p53, mTOR, and TGFβ, and downregulation of cytoskeletal and vesicle trafficking terms.

View Article and Find Full Text PDF

Genome-Wide Identification and Evolutionary Analysis of Functional Genes in Plant Species.

Genes (Basel)

December 2024

State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.

: BABY BOOM (BBM), a transcription factor from the APETALA2 (AP2) protein family, plays a critical role in somatic embryo induction and apomixis. has now been widely applied to induce apomixis or enhance plant transformation and regeneration efficiency through overexpression or ectopic expression. However, the structural and functional evolutionary history of genes in plants is still not well understood.

View Article and Find Full Text PDF

APOL1 Modulates Renin-Angiotensin System.

Biomolecules

December 2024

Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA.

Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin-angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing vector (V/DPD), G0 (G0/DPDs), G1 (G1/DPDs), and G2 (G2/DPDs) were evaluated for renin, Vitamin D receptor (VDR), and podocyte molecular markers (PDMMs, including WT1, Podocalyxin, Nephrin, and Cluster of Differentiation [CD]2 associated protein [AP]). G0/DPDs displayed attenuated renin but an enhanced expression of VDR and Wilms Tumor [WT]1, including other PDMMs; in contrast, G1/DPDs and G2/DPDs exhibited enhanced expression of renin but decreased expression of VDR and WT1, as well as other PDMMs (at both the protein and mRNA levels).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!