Studies on Preparation, Characterization and Application of Porous Functionalized Glycidyl Methacrylate-Based Microspheres.

Materials (Basel)

Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland.

Published: March 2021

A one-step swelling and polymerization technique was used in the synthesis of porous glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) monodisperse polymeric microspheres. The polystyrene (PS) seed obtained in the dispersion polymerization was used as a shape template. The presence of epoxide rings in the chemical structure of microspheres enables their post-polymerization chemical modifications involving: the Diels-Alder reaction with sodium cyclopentadienide and maleic anhydride, the reaction with 4,4'-(bismaleimido)diphenylmethane, and the thiol-Michael reaction with methacryloyl chloride and 2-mercaptopropionic acid. Changing the reaction mixture composition-the amounts of crosslinking monomer and PS seed as well as the type and concentration of porogen porous microspheres of different porous structures were obtained. Their porous structures were characterized in the dry and swollen states. The copolymers obtained from the equimolar monomers mixture modified in the above way were applied as the column packing materials and tested in the reverse-phase HPLC (High-Performance Liquid Chromatography). A few factors influencing morphology and porous structure of microspheres were studied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002100PMC
http://dx.doi.org/10.3390/ma14061438DOI Listing

Publication Analysis

Top Keywords

structure microspheres
8
porous structures
8
porous
6
microspheres
5
studies preparation
4
preparation characterization
4
characterization application
4
application porous
4
porous functionalized
4
functionalized glycidyl
4

Similar Publications

Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.

View Article and Find Full Text PDF

Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles.

View Article and Find Full Text PDF

Colloidal ionogels: Controlled assembly and self-propulsion upon tunable swelling.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China. Electronic address:

Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling.

View Article and Find Full Text PDF

Rapid Acquisition of High-Pixel Fluorescence Lifetime Images of Living Cells via Image Reconstruction Based on Edge-Preserving Interpolation.

Biosensors (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times.

View Article and Find Full Text PDF

Encapsulation in alginate hydrogel microspheres is an effective method for protecting and improving the survival of lactic acid bacteria in different environments. This research aims to expand the knowledge about the structure/property relationship of calcium alginate microspheres loaded with a mixture of autochthonous probiotic bacteria ( and ). A novel hydrogel formulation (FORMLAB) was prepared by ionic gelation and the molecular interactions between the FORMLAB constituents, surface morphology, structure, swelling degree, and release profile were characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!