Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimicrobial peptides (AMPs) present a promising scaffold for the development of potent antimicrobial agents. Substitution of tryptophan by non-natural amino acid Azulenyl-Alanine (AzAla) would allow studying the mechanism of action of AMPs by using unique properties of this amino acid, such as ability to be excited separately from tryptophan in a multi-Trp AMPs and environmental insensitivity. In this work, we investigate the effect of Trp→AzAla substitution in antimicrobial peptide buCATHL4B (contains three Trp side chains). We found that antimicrobial and bactericidal activity of the original peptide was preserved, while cytocompatibility with human cells and proteolytic stability was improved. We envision that AzAla will find applications as a tool for studies of the mechanism of action of AMPs. In addition, incorporation of this non-natural amino acid into AMP sequences could enhance their application properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001250 | PMC |
http://dx.doi.org/10.3390/biom11030421 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!