Nuclear egress is an essential process in the replication of human cytomegalovirus (HCMV), as it enables the migration of newly formed viral capsids from the nucleus into the cytoplasm. Inhibition of the HCMV core nuclear egress complex (core NEC), composed of viral proteins pUL50 and pUL53, has been proposed as a potential new target for the treatment of HCMV infection and disease. Here, we present a new type of small molecule inhibitors of HCMV core NEC formation, which inhibit the pUL50-pUL53 interaction at nanomolar concentrations. These inhibitors, i.e., verteporfin and merbromin, were identified through the screening of the Prestwick Chemical Library of approved drug compounds. The inhibitory effect of merbromin is both compound- and target-specific, as no inhibition was seen for other mercury-organic compounds. Furthermore, merbromin does not inhibit an unrelated protein-protein interaction either. More importantly, merbromin was found to inhibit HCMV infection of cells in three different assays, as well as to disrupt HCMV NEC nuclear rim formation. Thus, while not being an ideal drug candidate by itself, merbromin may serve as a blueprint for small molecules with high HCMV core NEC inhibitory potential, as candidates for novel anti-herpesviral drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998563PMC
http://dx.doi.org/10.3390/v13030471DOI Listing

Publication Analysis

Top Keywords

nuclear egress
12
hcmv core
12
core nec
12
human cytomegalovirus
8
core nuclear
8
egress complex
8
type small
8
small molecule
8
molecule inhibitors
8
hcmv infection
8

Similar Publications

Identification and subcellular localization of proteins that interact with Duck plague virus pUL14 in infected host cells.

Poult Sci

December 2024

Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.

Duck plague (DP), which is caused by duck plague virus (DPV), is an infectious disease that severely harms the waterfowl breeding industry. The UL14 protein (pUL14) is a tegument protein encoded by the UL14 gene, which is located in the unique long (UL) region of the DPV genome. DPV pUL14 plays a crucial role in viral replication, likely by interacting with host and viral proteins that have yet to be identified.

View Article and Find Full Text PDF

The nuclear-cytoplasmic trafficking of matrix proteins (M) is essential for henipavirus budding, with M protein ubiquitination playing a pivotal role in this dynamic process. Despite its importance, the intricacies of the M ubiquitination cascade have remained elusive. In this study, we elucidate a novel mechanism by which Nipah virus (NiV), a highly pathogenic henipavirus, utilizes a ubiquitination complex involving the E2 ubiquitin-conjugating enzyme RAD6A and the E3 ubiquitin ligase RAD18 to ubiquitinate the virus's M protein, thereby facilitating its nuclear-cytoplasmic trafficking.

View Article and Find Full Text PDF

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) () is highly conserved in baculoviruses. Previous studies have shown that is required for the production of infectious budded virions (BVs). However, the functional role of in virion morphogenesis remains unknown.

View Article and Find Full Text PDF

CLCC1 promotes membrane fusion during herpesvirus nuclear egress.

bioRxiv

September 2024

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America.

Article Synopsis
  • Researchers studied how ancient viruses, like herpes, move their protective capsids from the nucleus to the cytoplasm in infected cells.
  • They found that these viruses use a process involving a host protein called CLCC1, crucial for the fusion of capsids with the inner nuclear membrane.
  • The absence of CLCC1 hampers viral spread and leads to problems within the cell's structures, indicating that viruses have evolved to exploit ancient cellular mechanisms for their transmission.
View Article and Find Full Text PDF

(1) Background: Intrinsic defense mechanisms are pivotal host strategies to restrict viruses already at early stages of their infection. Here, we addressed the question of how the autophagy receptor sequestome 1 (/p62, hereafter referred to as p62) interferes with human cytomegalovirus (HCMV) infection. (2) Methods: CRISPR/Cas9-mediated genome editing, mass spectrometry and the expression of p62 phosphovariants from recombinant HCMVs were used to address the role of p62 during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!