A magnetic field measurement system based on an array of Hall sensors is proposed. The sensors are fabricated using conventional microelectromechanical systems (MEMS) techniques and consist of a P-type silicon substrate, a silicon dioxide isolation layer, a phosphide-doped cross-shaped detection zone, and gold signal leads. When placed within a magnetic field, the interaction between the local magnetic field produced by the working current and the external magnetic field generates a measurable Hall voltage from which the strength of the external magnetic field is then derived. Four Hall sensors are fabricated incorporating cross-shaped detection zones with an identical aspect ratio (2.625) but different sizes (S, M, L, and XL). For a given working current, the sensitivities and response times of the four devices are found to be almost the same. However, the offset voltage increases with the increasing size of the detection zone. A 3 × 3 array of sensors is assembled into a 3D-printed frame and used to determine the magnetic field distributions of a single magnet and a group of three magnets, respectively. The results show that the constructed 2D magnetic field contour maps accurately reproduce both the locations of the individual magnets and the distributions of the magnetic fields around them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998490PMC
http://dx.doi.org/10.3390/mi12030299DOI Listing

Publication Analysis

Top Keywords

magnetic field
32
magnetic
9
field
8
hall sensors
8
sensors fabricated
8
cross-shaped detection
8
detection zone
8
working current
8
external magnetic
8
design application
4

Similar Publications

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

Evidence for a metal-bosonic insulator-superconductor transition in compressed sulfur.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.

View Article and Find Full Text PDF

Safety concerns associated with the use of benzodiazepines during MRI.

Nursing

December 2024

Tammy McClung is a nursing instructor of the RN to BSN program at the College of Brockport, State University of New York, in Brockport, N.Y. She also holds a per diem clinical position in urgent care at the University of Rochester.

Magnetic resonance imaging (MRI) is a powerful diagnostic tool that uses strong magnetic fields and radio waves to create detailed images of the body's internal structures. This article examines the challenges associated with MRI, particularly focusing on patient anxiety and claustrophobic reactions that can lead to aborted scans. It discusses the use of anxiolytics, especially benzodiazepines, to manage these issues, while highlighting the potential risks of respiratory depression and other adverse outcomes in select patient populations.

View Article and Find Full Text PDF

Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities.

Nanomaterials (Basel)

January 2025

Institute of Information Photonics Technology, School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.

Nonlinear optics, a critical branch of modern optics, presents unique potential in the study of two-dimensional (2D) magnetic materials. These materials, characterized by their ultra-thin geometry, long-range magnetic order, and diverse electronic properties, serve as an exceptional platform for exploring nonlinear optical effects. Under strong light fields, 2D magnetic materials exhibit significant nonlinear optical responses, enabling advancements in novel optoelectronic devices.

View Article and Find Full Text PDF

Optoelectronic Properties of Shallow Donor Atom in 2D-Curved Nanostructures Under External Electric and Magnetic Fields.

Nanomaterials (Basel)

December 2024

Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.

Using the effective mass approximation and the finite difference method, we examined the linear, non-linear, and total optical absorption coefficients (OAC), as well as the relative refractive index coefficients (RIC) variations for an off-center shallow donor impurity in a 2D-curved electronic nanostructure subjected to external electric and magnetic fields. Our results reveal that the peak positions of the OAC and RIC are susceptible to the geometrical angles, the impurity position, and the strength of the applied electric and magnetic fields. In particular, the positions of the OAC and RIC peaks can be shifted towards blue or red by adjusting the geometric angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!