The new series of 3-(2-chlorophenyl)- and 3-(3-chlorophenyl)-pyrrolidine-2,5-dione-acetamide derivatives as potential anticonvulsant and analgesic agents was synthesized. The compounds obtained were evaluated in the following acute models of epilepsy: maximal electroshock (MES), psychomotor (6 Hz, 32 mA), and subcutaneous pentylenetetrazole (PTZ) seizure tests. The most active substance-3-(2-chlorophenyl)-1-{2-[4-(4-fluorophenyl)piperazin-1-yl]-2-oxoethyl}-pyrrolidine-2,5-dione () showed more beneficial ED and protective index values than the reference drug-valproic acid (68.30 mg/kg vs. 252.74 mg/kg in the MES test and 28.20 mg/kg vs. 130.64 mg/kg in the 6 Hz (32 mA) test, respectively). Since anticonvulsant drugs are often effective in neuropathic pain management, the antinociceptive activity for two the promising compounds-namely, and -was also investigated in the formalin model of tonic pain. Additionally, for the aforementioned compounds, the affinity for the voltage-gated sodium and calcium channels, as well as GABA and TRPV1 receptors, was determined. As a result, the most probable molecular mechanism of action for the most active compound relies on interaction with neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Compounds and were also tested for their neurotoxic and hepatotoxic properties and showed no significant cytotoxic effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000848PMC
http://dx.doi.org/10.3390/molecules26061564DOI Listing

Publication Analysis

Top Keywords

antinociceptive activity
8
calcium channels
8
synthesis anticonvulsant
4
anticonvulsant antinociceptive
4
activity 3-2-chlorophenyl-
4
3-2-chlorophenyl- 3-3-chlorophenyl-25-dioxo-pyrrolidin-1-yl-acetamides
4
3-3-chlorophenyl-25-dioxo-pyrrolidin-1-yl-acetamides series
4
series 3-2-chlorophenyl-
4
3-2-chlorophenyl- 3-3-chlorophenyl-pyrrolidine-25-dione-acetamide
4
3-3-chlorophenyl-pyrrolidine-25-dione-acetamide derivatives
4

Similar Publications

Neuropathy is the most common complication of diabetes, leading to painful symptoms like hyperalgesia. Current treatments for diabetic painful neuropathy often prove inadequate, necessitating the exploration of new pharmacological approaches. Therefore, this study aimed to investigate the potential antinociceptive effect of aspirin-triggered lipoxin A4 (ATL), a specialized pro-resolving lipid mediator, when administered alone or in combination with cannabinoid agonists, to alleviate diabetic neuropathic pain.

View Article and Find Full Text PDF

The discovery of novel counteractive pharmaceuticals, which have recently generated much interest, has played a significant role in the development of drugs derived from herbal medicines or botanical sources. Paederia foetida (P. foetida) is one such example of a role in both traditional and traditional medicine.

View Article and Find Full Text PDF

Background: Morphine analgesic tolerance (MAT) limits the clinical application of morphine in the management of chronic pain. IIK7 is a melatonin type 2 (MT2) receptor agonist known to have antioxidant properties. Oxidative stress is recognized as a critical factor in MAT.

View Article and Find Full Text PDF

Alkaloids from spp. (Malvaceae): Chemosystematic Aspects, Biosynthesis, Total Synthesis, and Biological Activities.

Int J Mol Sci

December 2024

Instituto de Pesquisas de Produtos Naturais Walter Mors (IPPN), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Bloco H, Rio de Janeiro 21941-599, RJ, Brazil.

, a genus within the Malvaceae family, is abundantly distributed in tropical and subtropical areas worldwide. Many species of this genus are widely utilized in various ways, including chewing, in folk medicine, acting as an anti-inflammatory agent, and treating gastrointestinal disorders, rheumatism, and asthma, among other conditions. These applications are largely due to their secondary metabolites, primarily quinolone alkaloids and cyclopeptides.

View Article and Find Full Text PDF

Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na and TRP Channels.

Biomolecules

December 2024

Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.

Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!