Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Controlled deposition of metals is essential for the creation of bimetallic catalysts having predictable composition and character. Continuous co-electroless deposition (co-ED) permits the creation of bimetallic catalysts with predictive control over composition. This method was applied to create a suite of Cu-Pt mixed-metal shell catalysts for use in methanol electrooxidation in direct methanol fuel cell applications (DMFCs). Enhanced performance of Cu-Pt compositions over Pt alone was predicted by existing computational studies in the literature. Experimental evidence from this study supports the bifunctional catalyst explanation for enhanced activity and confirms the optimum Cu:Pt ratio as CuPt for this methanol electrooxidation. This ability to control the composition of a bimetallic shell can be extended to other systems where the ratio of two metals is critical for catalytic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003816 | PMC |
http://dx.doi.org/10.3390/nano11030793 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!