Ensemble of Multiple Classifiers for Multilabel Classification of Plant Protein Subcellular Localization.

Life (Basel)

Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Tha Kham, Bang Khun Thian, Bangkok 10150, Thailand.

Published: March 2021

The accurate prediction of protein localization is a critical step in any functional genome annotation process. This paper proposes an improved strategy for protein subcellular localization prediction in plants based on multiple classifiers, to improve prediction results in terms of both accuracy and reliability. The prediction of plant protein subcellular localization is challenging because the underlying problem is not only a multiclass, but also a multilabel problem. Generally, plant proteins can be found in 10-14 locations/compartments. The number of proteins in some compartments (nucleus, cytoplasm, and mitochondria) is generally much greater than that in other compartments (vacuole, peroxisome, Golgi, and cell wall). Therefore, the problem of imbalanced data usually arises. Therefore, we propose an ensemble machine learning method based on average voting among heterogeneous classifiers. We first extracted various types of features suitable for each type of protein localization to form a total of 479 feature spaces. Then, feature selection methods were used to reduce the dimensions of the features into smaller informative feature subsets. This reduced feature subset was then used to train/build three different individual models. In the process of combining the three distinct classifier models, we used an average voting approach to combine the results of these three different classifiers that we constructed to return the final probability prediction. The method could predict subcellular localizations in both single- and multilabel locations, based on the voting probability. Experimental results indicated that the proposed ensemble method could achieve correct classification with an overall accuracy of 84.58% for 11 compartments, on the basis of the testing dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066735PMC
http://dx.doi.org/10.3390/life11040293DOI Listing

Publication Analysis

Top Keywords

protein subcellular
12
subcellular localization
12
multiple classifiers
8
plant protein
8
protein localization
8
average voting
8
protein
5
localization
5
prediction
5
ensemble multiple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!