Active transport of sugars into bacteria occurs through symporters driven by ion gradients. is the most well-studied proton sugar symporter, whereas is the most characterized sodium sugar symporter. These are members of the major facilitator (MFS) and the amino acid-Polyamine organocation (APS) transporter superfamilies. While there is no structural homology between these transporters, they operate by a similar mechanism. They are nano-machines driven by their respective ion electrochemical potential gradients across the membrane. has 12 transmembrane helices (TMs) organized in two 6-TM bundles, each containing two 3-helix TM repeats. has a core structure of 10 TM helices organized in two inverted repeats (TM 1-5 and TM 6-10). In each case, a single sugar is bound in a central cavity and sugar selectivity is determined by hydrogen- and hydrophobic- bonding with side chains in the binding site. In vSGLT, the sodium-binding site is formed through coordination with carbonyl- and hydroxyl-oxygens from neighboring side chains, whereas in the proton (HO) site is thought to be a single glutamate residue (Glu325). The remaining challenge for both transporters is to determine how ion electrochemical potential gradients drive uphill sugar transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037263 | PMC |
http://dx.doi.org/10.3390/ijms22073572 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!