Species- and Age/Generation-Dependent Adherence of to Human Intestinal Mucus In Vitro.

Microorganisms

Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan.

Published: March 2021

Adhesion to intestinal mucus is the first event in the process by which intestinal microbes colonize the intestine. It plays a critical role in the initiation of interactions between gut microbes and host animals. Despite the importance, the adhesion properties of probiotics are generally characterized using porcine mucin; adhesion to human mucus has been poorly characterized. In the present study, human intestinal mucus samples were isolated from 114 fecal samples collected from healthy infants and adults. In initial screening, four out of the 13 beneficial microbes tested, including the type strain of TMC3115, GG, and subsp. Bb12, showed strong adhesion abilities to human mucus. The type strain of and TMC3115 adhered more strongly to neonatal and infant mucus than to adult mucus, while GG and Bb12 adhered more strongly to adult mucus than to infant mucus. Similar results were obtained for ten additional strains of . In conclusion, age/generation-related differences were observed in the adhesion properties of and other strains. A deeper symbiotic relationship may exist between infants, particularly neonates, and based on its enhanced adhesion to neonatal intestinal mucus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998455PMC
http://dx.doi.org/10.3390/microorganisms9030542DOI Listing

Publication Analysis

Top Keywords

intestinal mucus
16
mucus
10
human intestinal
8
adhesion properties
8
human mucus
8
type strain
8
strain tmc3115
8
infant mucus
8
adult mucus
8
adhesion
6

Similar Publications

Associated to various illnesses, Western Diet (WD) is acknowledged to have deleterious effects on human gut microbiota, decreasing bacterial diversity, lowering gut bacteria associated to health (such as , while increasing those linked to diseases (e.g., ).

View Article and Find Full Text PDF

Cellular Senescence Contributes to Colonic Barrier Integrity Impairment Induced by Toxoplasma gondii Infection.

Inflammation

January 2025

Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Toxoplasma gondii (T. gondii) induces gut barrier integrity impairment, which is crucial to the establishment of long-term infection in hosts. Cellular senescence is an imperative event that drives disease progression.

View Article and Find Full Text PDF

Background: The main challenge in new drug development is accurately predicting the human response in preclinical models.

Methods: In this study, we developed three different intestinal barrier models using advanced biofabrication techniques: (i) a manual model containing Caco-2 and HT-29 cells on a collagen bed, (ii) a manual model with a Caco-2/HT-29 layer on a HDFn-laden collagen layer, and (iii) a 3D bioprinted model incorporating both cellular layers. Each model was rigorously tested for its ability to simulate a functional intestinal membrane.

View Article and Find Full Text PDF

Introduction: The gut microbiome maintains the mucus membrane barrier's integrity, and it is modulated by the host's immune system.

Aim: To detect the effect of microbiota modulation using probiotics, prebiotics, symbiotics, and natural changes on colorectal cancers (CRCs).

Methods: A PubMed search was conducted to retrieve the original and articles published in English language from 2010 until 2021 containing the following keywords: 1) CRCs, 2) CRCs treatment (i.

View Article and Find Full Text PDF

An increase in plastic waste and its release into the environment has led to health concerns over microplastics (MPs) in the environment. The intestinal mucosal layer is a key defense mechanism against ingested MPs, preventing the migration of particles to other parts of the body. MP migration through intestinal mucus is challenging to study due to difficulties in obtaining intact mucus layers for testing and numerous formulations, shapes, and sizes of microplastics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!