The goal of this paper is to provide a novel computing approach that can be used to reduce the power consumption, size, and cost of wearable electronics. To achieve this goal, the use of microelectromechanical systems (MEMS) sensors for simultaneous sensing and computing is introduced. Specifically, by enabling sensing and computing locally at the MEMS sensor node and utilizing the usually unwanted pull in/out hysteresis, we may eliminate the need for cloud computing and reduce the use of analog-to-digital converters, sampling circuits, and digital processors. As a proof of concept, we show that a simulation model of a network of three commercially available MEMS accelerometers can classify a train of square and triangular acceleration signals inherently using pull-in and release hysteresis. Furthermore, we develop and fabricate a network with finger arrays of parallel plate actuators to facilitate coupling between MEMS devices in the network using actuating assemblies and biasing assemblies, thus bypassing the previously reported coupling challenge in MEMS neural networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000076PMC
http://dx.doi.org/10.3390/mi12030268DOI Listing

Publication Analysis

Top Keywords

mems sensor
8
sensing computing
8
mems
6
exploiting pull-in/pull-out
4
pull-in/pull-out hysteresis
4
hysteresis electrostatic
4
electrostatic mems
4
sensor networks
4
networks realize
4
realize novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!