Inertial measurement unit (IMU)-based joint angle estimation is an increasingly mature technique that has a broad range of applications in clinics, biomechanics and robotics. However, the deviations of different IMUs' reference frames, referring to IMUs' individual orientations estimating errors, is still a challenge for improving the angle estimation accuracy due to conceptual confusion, relatively simple metrics and the lack of systematical investigation. In this paper, we clarify the determination of reference frame unification, experimentally study the time-varying characteristics of reference frames' deviations and accordingly propose a novel method with a comprehensive metric to unify reference frames. To be specific, we firstly define the reference frame unification (RFU) and distinguish it with drift correction that has always been confused with the term RFU. Secondly, we design a mechanical gimbal-based experiment to study the deviations, where sensor-to-body alignment and rotation-caused differences of orientations are excluded. Thirdly, based on the findings of the experiment, we propose a novel method to utilize the consistency of the joint axis under the hinge-joint constraint, gravity acceleration and local magnetic field to comprehensively unify reference frames, which meets the nonlinear time-varying characteristics of the deviations. The results on ten human subjects reveal the feasibility of our proposed method and the improvement from previous methods. This work contributes to a relatively new perspective of considering and improving the accuracy of IMU-based joint angle estimation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962048PMC
http://dx.doi.org/10.3390/s21051813DOI Listing

Publication Analysis

Top Keywords

angle estimation
16
reference frame
12
frame unification
12
imu-based joint
12
joint angle
12
novel method
12
reference frames
12
time-varying characteristics
8
propose novel
8
unify reference
8

Similar Publications

The analysis of incremental marks in the enamel, dentine and cementum of extant and extinct species provides important information about the rate and pattern of tooth growth, which permits inferences about key life history traits. Traditionally, such research has mainly focused on primates, while other mammalian groups have remained relatively unexplored. In some cases, this has led to the misidentification of incremental markings and the miscalculation of dental growth parameters in non-primate taxa, which has highlighted the importance of obtaining more reliable comparative frameworks.

View Article and Find Full Text PDF

Implantable multifunctional probes have transformed neuroscience research, offering access to multifaceted brain activity that was previously unattainable. Typically, simultaneous access to both optical and electrical signals requires separate probes, while their integration into a single device can result in the emergence of photogenerated electrical artifacts, affecting the quality of high-frequency neural recordings. Among the nontrivial strategies aimed at the realization of an implantable multifunctional interface, the integration of optical and electrical capabilities on a single, minimally invasive, tapered optical fiber probe has been recently demonstrated using fibertrodes.

View Article and Find Full Text PDF

Bi-ventricular elastic material parameters estimation using 3D CMR myocardial strains in rheumatic heart disease patients.

J Biomech

January 2025

Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases. Electronic address:

Understanding the elastic material behavior of myocardium during the diastolic phase is critical for evaluating cardiac function and improving treatments for diastolic abnormalities. This study introduces a novel multi-objective optimization framework that incorporates both strain and volume measurements to enhance the accuracy of myocardial property assessments in Rheumatic Heart Disease (RHD) patients and healthy controls. By employing global volume and strain measurements instead of segmented strains from the sixteen AHA regions, we achieve a robust alignment with the Klotz curve across all groups, indicating an accurate simulation of end-diastolic pressure-volume relationships (EDPVRs).

View Article and Find Full Text PDF

Background: Nonweightbearing preoperative assessments avoid quadriceps contraction that tends to affect patellar motion and appear to be inaccurate in quantifying anatomic factors, which can lead to incorrect corrections and postoperative complications.

Questions/purposes: (1) Does the relationship of patellar axial malalignment and other anatomic factors change during weightbearing? (2) What anatomic factor was most strongly correlated with recurrent patellar dislocation during weightbearing?

Methods: This prospective, comparative, observational study recruited participants at our institution between January 2023 and September 2023. During this time, all patients with recurrent patellar dislocations received both weightbearing and nonweightbearing CT scans; control patients who received unilateral CT scans because of injuries or benign tumors received both weightbearing and nonweightbearing CT scans.

View Article and Find Full Text PDF

Dynamic docking algorithm for UGV to UAV based on single planning under disturbed conditions.

ISA Trans

December 2024

State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Institute of Technology, School of Automation, Beijing, China.

This paper investigates the initial dynamic docking problem to mobile and trajectory-disturbed targets for tracking and recovering drones by Unmanned Ground Vehicles (UGVs). First, the target status is estimated by employing the Extended Kalman Filter (EKF). Then, the drone's perturbation is mapped to a dynamic docking point, quantifying the target motion deviation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!