Nosocomial pneumonia (NP), including hospital-acquired pneumonia in non-intubated patients and ventilator-associated pneumonia, is one of the most frequent hospital-acquired infections, especially in the intensive care unit. NP has a significant impact on morbidity, mortality and health care costs, especially when the implicated pathogens are multidrug-resistant ones. This narrative review aims to critically review what is new in the field of NP, specifically, diagnosis and antibiotic treatment. Regarding novel imaging modalities, the current role of lung ultrasound and low radiation computed tomography are discussed, while regarding etiological diagnosis, recent developments in rapid microbiological confirmation, such as syndromic rapid multiplex Polymerase Chain Reaction panels are presented and compared with conventional cultures. Additionally, the volatile compounds/electronic nose, a promising diagnostic tool for the future is briefly presented. With respect to NP management, antibiotics approved for the indication of NP during the last decade are discussed, namely, ceftobiprole medocaril, telavancin, ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001201 | PMC |
http://dx.doi.org/10.3390/microorganisms9030534 | DOI Listing |
Crit Care
January 2025
HCor Research Institute, Hospital do Coração, Rua Desembargador Eliseu Guilherme 200, 8th Floor, São Paulo, SP, 04004-030, Brazil.
Background: Limited data is available to evaluate the burden of device associated healthcare infections (HAI) [central line associated bloodstream infection (CLABSI), catheter associated urinary tract infection (CAUTI), and ventilator associated pneumonia (VAP)] in low and-middle-income countries. Our aim is to investigate the population attributable mortality fraction and the absolute mortality difference of HAI in a broad population of critically ill patients from Brazil.
Methods: Multicenter cohort study from September 2019 to December 2023 with prospective individual patient data collection.
Lung
January 2025
Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
Purpose: To determine effects of colonization with multidrug-resistant bacteria (MDRB) in general wards on characteristics, treatment, and prognosis of hospital-acquired pneumonia (HAP).
Methods: This was a multicenter retrospective cohort study of patients with HAP admitted to 16 tertiary or university hospitals in Korea from July 2019 to December 2019. From the entire cohort, patients who developed pneumonia in general wards with known colonization status before the onset of pneumonia were included in this study.
Acta Med Port
January 2025
Introduction: Healthcare-associated infections are an important cause of morbidity and mortality in the pediatric population and a growing problem in intensive care services. However, limited data are available on these infections in the Portuguese pediatric population. This study aimed to estimate its prevalence rate in a Portuguese pediatric intensive care unit, identifying the most frequent microorganisms and their antibiotic resistance profiles.
View Article and Find Full Text PDFmSphere
December 2024
Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China.
is a prominent Gram-negative and encapsulated opportunistic pathogen that causes a multitude of infections such as severe respiratory and healthcare-associated infections. Despite the widespread anti-microbial resistance and the high mortality rate, currently, no clinically vaccine is approved for battling . To date, messenger RNA (mRNA) vaccine is one of the most advancing technologies and are extensively investigated for viral infection, while infrequently applied for prevention of bacterial infections.
View Article and Find Full Text PDFPediatr Infect Dis J
January 2025
Department of Paediatrics, University of Melbourne.
Background: Lower respiratory tract infections (LRTIs) remain a leading cause of community-acquired and nosocomial infection in children and a common indication for antimicrobial use and intensive care admission. Determining the causative pathogen for LRTIs is difficult and traditional culture-based methods are labor- and time-intensive. Emerging molecular diagnostic tools may identify pathogens and detect antimicrobial resistance more quickly, to enable earlier targeted antimicrobial therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!