Weight loss is a major focus of research and public health efforts. Time-restricted eating (TRE) is shown to be effective for weight loss, but the impact on bone is unclear. Short-term TRE studies show no effect on bone mineral density (BMD), but no study has measured bone turnover markers. This secondary analysis examined the effect of 12 weeks of TRE vs. unrestricted eating on bone turnover and BMD. Overweight and obese adults aged 18-65 y ( = 20) were randomized to TRE (ad libitum 8-h eating window) or non-TRE. Serum N-terminal propeptide of type I collagen (P1NP), cross-linked N-telopeptide of type I collagen (NTX), and parathyroid hormone (PTH) levels were measured and dual-energy X-ray absorptiometry (DXA) scans were taken pre- and post-intervention. In both groups, P1NP decreased significantly ( 0.04) but trended to a greater decrease in the non-TRE group ( 0.07). The treatment time interaction for bone mineral content (BMC) was significant ( 0.02), such that BMC increased in the TRE group and decreased in the non-TRE group. Change in P1NP was inversely correlated with change in weight ( 0.04) overall, but not within each group. These findings suggest that TRE does not adversely affect bone over a moderate timeframe. Further research should examine the long-term effects of TRE on bone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065778PMC
http://dx.doi.org/10.3390/nu13041155DOI Listing

Publication Analysis

Top Keywords

bone turnover
12
time-restricted eating
8
bone
8
weight loss
8
bone mineral
8
type collagen
8
non-tre group
8
tre
7
eating weeks
4
weeks adversely
4

Similar Publications

In 2017, Kidney Disease: Improving Global Outcomes (KDIGO) published a Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Since then, new lines of evidence have been published related to evaluating disordered mineral metabolism and bone quality and turnover, identifying and inhibiting vascular calcification, targeting vitamin D levels, and regulating parathyroid hormone. For an in-depth consideration of the new insights, in October 2023, KDIGO held a Controversies Conference on CKD-MBD: Progress and Knowledge Gaps Toward Personalizing Care.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

ANXA2 promotes chondrocyte differentiation and fracture healing by regulating the phosphorylation of STAT3 and PI3K/AKT signaling pathways.

Cell Signal

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:

Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.

View Article and Find Full Text PDF

Osteoporosis is the most common bone metabolic unbalance, leading to fragility fractures, which are known to be associated with structural changes in the bone. Cortical bone accounts for 80 % of the skeleton mass and undergoes remodeling throughout life, leading to changes in its thickness and microstructure. Although many studies quantified the different cortical bone structures using CT techniques (3D), they are often realised on a small number of samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!