Skeletal muscle regeneration is a well-organized process that requires remodeling of the extracellular matrix (ECM). In this study, we revealed the protective role of periostin, a matricellular protein that binds to several ECM proteins during muscle regeneration. In intact muscle, periostin was localized at the neuromuscular junction, muscle spindle, and myotendinous junction, which are connection sites between muscle fibers and nerves or tendons. During muscle regeneration, periostin exhibited robustly increased expression and localization at the interstitial space. Periostin- mice showed decreased muscle weight due to the loss of muscle fibers during repeated muscle regeneration. Cultured muscle progenitor cells from periostin- mice showed no deficiencies in their proliferation, differentiation, and the expression of Pax7, MyoD, and myogenin, suggesting that the loss of muscle fibers in periostin- mice was not due to the impaired function of muscle stem/progenitor cells. Periostin- mice displayed a decreased number of CD31-positive blood vessels during muscle regeneration, suggesting that the decreased nutritional supply from blood vessels was the cause of muscle fiber loss in periostin- mice. These results highlight the novel role of periostin in maintaining muscle mass during muscle regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036386PMC
http://dx.doi.org/10.3390/ijms22073627DOI Listing

Publication Analysis

Top Keywords

muscle regeneration
28
periostin- mice
20
muscle
18
muscle fibers
16
role periostin
8
loss muscle
8
cells periostin-
8
blood vessels
8
vessels muscle
8
regeneration
7

Similar Publications

Subject-specific biomechanics influences tendon strains in patients with Achilles tendinopathy.

Sci Rep

January 2025

Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.

The treatment of Achilles tendinopathy is challenging, as 40% of patients do not respond to existing rehabilitation protocols. These protocols neglect individual Achilles tendon (AT) characteristics, which are crucial for healing of the tendon tissue. Although prior studies suggest an optimal strain for AT regeneration (6% tendon strains), it is unclear if current protocols meet this condition.

View Article and Find Full Text PDF

Skeletal Muscle Stem Cells and the Microenvironment Regulation in Sarcopenia:A Review.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Health and Medical Department, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.

Sarcopenia is an age-related degenerative skeletal muscle disorder characterized by the loss of skeletal muscle mass and function during aging.Sarcopenia can impair the elderly's ability to perform daily activities and is associated with high risks of falls,fractures,and hospitalization.It seriously affects the quality of life of the elderly and becomes one of the major health problems in the aging society.

View Article and Find Full Text PDF

Decellularised nerve transplantation has limited therapeutic efficacy for peripheral nerve injuries. In this study, we tested the hypothesis that nerve regeneration can be promoted by increasing blood circulation to the decellularised nerve through the surrounding blood-flow environment. We transplanted 20 mm decellularised nerves into sciatic nerve defects in Sprague-Dawley rats (female, 12 weeks old).

View Article and Find Full Text PDF

Purpose: Brachial plexus traction injuries have conventionally been categorized as involving the C5-C6, C5-C7, C5-T1, and C8-T1 roots. In this article, we report a distinct clinical presentation of brachial plexus injury characterized by intact finger flexion with signs of complete brachial plexus injury.

Methods: From 2010 to 2022, 989 patients who sustained brachial plexus injuries were examined and underwent surgery.

View Article and Find Full Text PDF

In general, the nerve cells of the peripheral nervous system regenerate normally within a certain period after the physical damage of their axon. However, when peripheral nerves are transected by trauma or tissue extraction for cancer treatment, spontaneous nerve regeneration cannot occur. Therefore, it is necessary to perform microsurgery to connect the transected nerve directly or insert a nerve conduit to connect it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!