Post-translational modifications regulate the structure and function of proteins that can result in changes to the activity of different pathways. These include modifications altering the redox state of thiol groups on protein cysteine residues, which are sensitive to oxidative environments. While mass spectrometry has advanced the identification of protein thiol modifications and expanded our knowledge of redox-sensitive pathways, the quantitative aspect of this technique is critical for the field of redox proteomics. In this review, we describe how mass spectrometry-based redox proteomics has enabled researchers to accurately quantify the stoichiometry of reversible oxidative modifications on specific cysteine residues of proteins. We will describe advancements in the methodology that allow for the absolute quantitation of thiol modifications, as well as recent reports that have implemented this approach. We will also highlight the significance and application of such measurements and why they are informative for the field of redox biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004825 | PMC |
http://dx.doi.org/10.3390/antiox10030499 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Microbial metabolism is impressively flexible, enabling growth even when available nutrients differ greatly from biomass in redox state. , for example, rearranges its physiology to grow on reduced and oxidized carbon sources through several forms of fermentation and respiration. To understand the limits on and evolutionary consequences of this metabolic flexibility, we developed a coarse-grained mathematical framework coupling redox chemistry with principles of cellular resource allocation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
Background: Mitochondrial reactive oxygen species (mROS), such as superoxide and hydrogen peroxide (HO), are implicated in aging-associated neurological disorders, including Alzheimer's Disease and frontotemporal dementia. Mitochondrial complex III of the respiratory chain has the highest capacity for mROS production and generates mROS toward the cytosol, poising it to regulate intracellular signaling and disease mechanisms. However, the exact triggers of complex III-derived ROS (CIII-ROS), its downstream molecular targets, and its functional roles in dementia-related pathogenesis remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sapienza University of Rome, Rome, Rome, Italy.
Background: Brain insulin resistance (bIR) heavily impacts on the core pathological processes of aging and Alzheimer disease (AD) since insulin regulates brain metabolism and cognitive functions. A close link among bIR, oxidative stress (OS) and mitochondrial defects exists, that contributes to brain dysfunctions observed in AD. Intriguingly, several studies suggest that intranasal insulin treatment (INI) enhances cognitive performance and reduced AD neuropathology both in humans and murine models of AD.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany.
Metabolic flexibility in skeletal muscle is essential for maintaining healthy glucose and lipid metabolism, and its dysfunction is closely linked to metabolic diseases. Exercise enhances metabolic flexibility, making it an important tool for discovering mechanisms that promote metabolic health. Here we show that pantothenate kinase 4 (PanK4) is a new conserved exercise target with high abundance in muscle.
View Article and Find Full Text PDFJ Cancer
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
The thioredoxin (Trx) system is integral to redox regulation and participates in several physiological processes, including tumor growth, immune response, and stem cell differentiation. We have performed a comprehensive and holistic analysis of the Trx system in tumor immunity in this study. A study using the Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases was conducted to determine the expression and distribution of Trx system proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!