The class of ternary copper chalcogenides CuMX (M = V, Nb, Ta; X = S, Se, Te), also known as the sulvanite family, has attracted attention in the past decade as featuring promising materials for optoelectronic devices, including solar photovoltaics. Experimental and theoretical studies of these semiconductors have provided much insight into their properties, both in bulk and at the nanoscale. The recent realization of sulvanites at the nanoscale opens new avenues for the compounds toward printable electronics. This review is aimed at the consideration of synthesis methods, relevant properties and the recent developments of the most important sulvanites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005093 | PMC |
http://dx.doi.org/10.3390/nano11030823 | DOI Listing |
ACS Appl Mater Interfaces
March 2024
Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States.
In this work, we report the first single-step, size-controlled synthesis of CuVSe cuboidal nanocrystals, with the longest dimension ranging from 9 to 36 nm, and their use in replacing the platinum counter electrode in dye-sensitized solar cells. CuVSe, a ternary semiconductor from the class of sulvanites, is theoretically predicted to have good hole mobility, making it a promising candidate for charge transport in solar photovoltaic devices. The identity and crystalline purity of the CuVSe nanocrystals were validated by X-ray powder diffraction (XRD) and Raman spectroscopy.
View Article and Find Full Text PDFACS Nanosci Au
October 2022
Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States.
Niobium sulvanites CuNbX (X = S, Se) have been theoretically predicted as promising candidates for solar photovoltaics and photocatalytic water splitting. This report outlines the first synthesis of CuNbS and CuNbSe in a nanocrystalline form. The crystal structures were investigated by X-ray diffraction, identity was confirmed by Raman spectroscopy, and the optoelectronic properties and morphology of CuNbS and CuNbSe nanocrystals were examined by UV-vis spectroscopy and transmission electron microscopy, respectively.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2021
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33199, USA.
The class of ternary copper chalcogenides CuMX (M = V, Nb, Ta; X = S, Se, Te), also known as the sulvanite family, has attracted attention in the past decade as featuring promising materials for optoelectronic devices, including solar photovoltaics. Experimental and theoretical studies of these semiconductors have provided much insight into their properties, both in bulk and at the nanoscale. The recent realization of sulvanites at the nanoscale opens new avenues for the compounds toward printable electronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!