Biliary tract cancer (BTC) is characterized by an intense stromal reaction and a complex landscape of infiltrating immune cells. Evidence is emerging that tumor-infiltrating neutrophils (TINs) have an impact on carcinogenesis and tumor progression. TINs have also been associated with outcomes in various solid malignant tumors but their possible clinical role in BTC is largely unknown. Tissue samples from patients with sporadic BTC ("spBTC" cohort, = 53) and BTC in association with primary sclerosing cholangitis ("PSC-BTC" cohort, = 7) were collected. Furthermore, tissue samples from 27 patients with PSC who underwent liver transplantation ("PSC-LTX" cohort) were investigated. All specimens were assessed for TIN density in invasive and precancerous lesions (biliary intraepithelial neoplasia, BilIN). Most spBTC showed low TIN density (LD, 61%). High TIN density (HD) was detected in 16% of the tumors, whereas 23% were classified as intermediate density (ID); the majority of both HD and ID groups were in T1-T2 tumors (83% and 100%, = 0.012). TIN density in BilIN lesions did not significantly differ among the three groups. The HD group had a mean overall survival (OS) of 53.5 months, whereas the mean OS in the LD and ID groups was significantly shorter (LD 29.5 months vs. ID 24.6 months, log-rank < 0.05). The results of this study underline the possible prognostic relevance of TINs in BTC and stress the complexity of the immune cell landscape in BTC. The prognostic relevance of TINs suggests a key regulator role in inflammation and immune landscape in BTC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004909PMC
http://dx.doi.org/10.3390/jpm11030233DOI Listing

Publication Analysis

Top Keywords

tin density
16
biliary tract
8
tissue samples
8
samples patients
8
prognostic relevance
8
relevance tins
8
landscape btc
8
btc
7
density
5
tumor infiltrating
4

Similar Publications

Highly stable lithium metal anodes enabled by bimetallic metal-organic frameworks derivatives-modified carbon cloth.

J Colloid Interface Sci

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006 China. Electronic address:

Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode.

View Article and Find Full Text PDF

SnHPO: A Layered Tin(II) Phosphate with Enhanced Birefringence.

Inorg Chem

January 2025

College of Physics, Qingdao University, National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao 266071, China.

As promising optoelectronic functional materials in the short-wavelength spectral region, such as ultraviolet (UV) and deep UV, phosphates have recently received increased attention. However, phosphate materials commonly suffer from limited birefringence owing to the highly symmetrical PO tetrahedra. We herein report a layered tin(II) phosphate with improved birefringence.

View Article and Find Full Text PDF

Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.

View Article and Find Full Text PDF

TiN Boosting the Oxygen Reduction Performance of Fe-N-C through the Relay-Catalyzing Mechanism for Metal-Air Batteries.

ACS Appl Mater Interfaces

January 2025

Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China.

Metal-air batteries desire highly active, durable, and low-cost oxygen reduction catalysts to replace expensive platinum (Pt). The Fe-N-C catalyst is recognized as the most promising candidate for Pt; however, its durability is hindered by carbon corrosion, while activity is restricted due to limited oxygen for the reaction. Herein, TiN is creatively designed to be hybridized with Fe-N-C (TiN/Fe-N-C) to relieve carbon corrosion and absorb more oxygen when catalyzing oxygen reduction.

View Article and Find Full Text PDF

Effects of laser wavelength and pulse energy on the evaporation behavior of TiN coatings in atom probe tomography: A multi-instrument study.

Ultramicroscopy

January 2025

Christian Doppler Laboratory for Sustainable Hard Coatings at the Department of Materials Science, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria.

The impact of the laser wavelength on accuracy in elemental composition analysis in atom probe tomography (APT) was investigated. Three different commercial atom probe systems - LEAP 3000X HR, LEAP 5000 XR, and LEAP 6000 XR - were systematically compared for a TiN model coating studying the effect of shorter laser wavelengths, especially in the deep ultraviolet (DUV) range, on the evaporation behavior. The findings demonstrate that the use of shorter wavelengths enhances the accuracy in elemental composition, while maintaining similar electric field strengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!