This work aimed at evaluating the effects of different emulsifiers on curcumin-loaded nanoemulsions' behavior during digestion, its safety and absorption, to develop nanoemulsions that provide safety and improved curcumin functionality. Nanoemulsions (NEs) were produced using two bio-based (lecithin (LEC) and rhamnolipids (RHAM)) and one synthetic (Tween80 (TWE)) emulsifier at similar concentrations. Different NEs were subjected to in vitro digestion. The cytotoxicity and permeability tests were performed in Caco-2 cells. NE_TWE were stable during all phases of in vitro digestion, whereas NE_LEC and NE_RHAM were found to be unstable from the gastric phase. NE_TWE showed 100% of free fatty acids released, followed by NE_RHAM and NE_LEC. Curcumin's bioaccessibility and stability increased in the following order: NE_LEC > NE_RHAM > NE_TWE. NE_LEC and NE_TWE did not show cytotoxic effects in any of the concentrations tested, while NE_RHAM presented high cytotoxicity in all concentrations tested. The apparent permeability coefficients were determined for NE_LEC and NE_TWE; however, the results were not statistically different. These results showed that the emulsifier used has a high impact on nanoemulsions' behavior under the digestion process and on their cytotoxicity. This work contributed to the state-of-the-art's progress on the development of safer curcumin delivery systems with improved functionality, particularly regarding the proper selection of ingredients to produce said systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004751 | PMC |
http://dx.doi.org/10.3390/nano11030815 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!