The viscoelastic behavior and reinforcement mechanism of polyethylene glycol (PEG) as an interfacial modifier in green tire tread composites were investigated in this study. The results show a clear positive effect on overall performance, and it significantly improved all the parameters of the "magic triangle" properties, the abrasion resistance, wet grip and ice traction, as well as the tire rolling resistance, simultaneously. For the preparation of the compounds, two mixing steps were used, as PEG 4000 was added on the second stage in order to avoid the competing reaction between silica/PEG and silanization. Fourier transform infrared spectroscopy (FTIR) confirmed that PEG could cover the silanol groups on the silica surface, resulting in the shortening of cure times and facilitating an increase of productivity. At low content of PEG, the strength was enhanced by the improvement of silica dispersion and the slippage of PEG chains, which are chemically and physically adsorbed on silica surface, but the use of excess PEG uncombined with silica in the compound, i.e., 5 phr, increases the possibility to shield the disulfide bonds of bis(3-(triethoxysilyl)-propyl) tetrasulfide (TESPT), and, thus, the properties were deteriorated. A constrained polymer model was proposed to explain the constrained chains of PEG in the silica-loaded composites on the basis of these results. An optimum PEG content is necessary for moderately strong matrix-filler interaction and, hence, for the enhancement in the mechanical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961832 | PMC |
http://dx.doi.org/10.3390/polym13050788 | DOI Listing |
ACS Appl Bio Mater
January 2025
Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.
Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.
View Article and Find Full Text PDFJ Contemp Dent Pract
October 2024
Department of Crown and Bridge, Faculty of Dentistry, Al-Azhar University, Cairo, Egypt.
Aim: To assess hard as well as soft peri-implant tissues within cases having two lost adjacent anterior teeth treated through placing either two implants with two separate crowns or only an implant along with a crown with a cantilever, and evaluating the effect of polyetheretherketone (PEEK) restoration on cantilever design up to 18 months after functional loading.
Materials And Methods: Twenty-seven participants (15 males and 12 females; mean age, 38.6 years; range 20-50 years) with missing two adjacent anterior teeth were treated with implant system (Flotecno implant system, Italy).
J Contemp Dent Pract
October 2024
Department of Prosthodontics, Government Dental College, Kozhikode, Kerala, India, Orcid: https://orcid.org/0000-0003-1456-3851.
Aim: The aim of this study was to compare the surface roughness and color stability of polyetheretherketone (PEEK) with those of conventional interim prosthetic materials like polymethylmethacrylate, bis-acrylic composite, and rubberized diurethane dimethacrylate, following immersion in solutions of varying pH value.
Materials And Methods: A total of 320 circular discs with 10 mm diameter and 2 mm height were divided based on the fabrication ( = 80)-group A: polymethylmethacrylate; group B: bis-acrylic composite; group R: rubberized diurethane; and group P: hot-pressed PEEK-and were subjected to baseline measurement of roughness ( = 40) and color ( = 40) using 3D profilometer and UV-Vis spectrophotometer, respectively. Later, 10 samples from each group were immersed in distilled water, black coffee, green tea, and Pepsi, respectively, for 120 days, and measurements of roughness and color were repeated.
Small
January 2025
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China.
Hydrogels demonstrate effective lubricating properties, but the underlying mechanisms at the nanoscale remain elucidated. In this study, a novel strategy is proposed by fabricating the hydrogel probes compatible with atomic force microscopy (AFM) to establish a superlubrication system based on the hydration interactions. The probe is made of polyethylene glycol diacrylate (PEGDA)-based hydrogel microspheres, which can achieve an extremely low friction coefficient of 0.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Faculty of dentistry, Ain Shams University, Cairo, Egypt.
Objective: The purpose of this study was to evaluate the effect of different preparation depths (0, 2 and 4 mm) of different restoration designs (classic endocrown design versus overlay design) on marginal adaptation of restorations fabricated of two different restorative materials (lithium disilicate and PEEK).
Materials And Methods: Sixty mandibular natural molars were collected as abutments for the restorations of this study, and grouped in three main groups of different cavity depths (0, 2 and 4). Each group was divided into two subgroups according to material of fabrication to (L) for lithium disilicate (IPS emax CAD, Ivoclar vivadent, Switzarland) and (P) for PEEK (Bio-hpp, Bredent, Germany).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!