Characterizing Mat Formation of Bamboo Fiber Composites: Horizontal Density Distribution.

Materials (Basel)

Department of Wood Science, Faculty of Forestry, University of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.

Published: March 2021

Bamboo fiber composite (BFC) is a unidirectional and continuous bamboo fiber composite manufactured by consolidation and gluing of flattened, partially separated bamboo culm strips into thick and dense panels. The composite mechanical properties are primarily influenced by panel density, its variation and uniformity. This paper characterized the horizontal density distribution (HDD) within BFC panels and its controlling factors. It revealed that HDD follows a normal distribution, with its standard deviation (SD) strongly affected by sampling specimen size, panel thickness and panel locations. SD was lowest in the thickest (40 mm) panel and largest-size (150 × 150-mm) specimens. There was also a systematic variation along the length of the BFC due to the tapering effect of bamboo culm thickness. Density was higher along panel edges due to restraint from the mold edges during hot pressing. The manual BFC mat forming process is presented and found to effectively minimize the density variation compared to machine-formed wood composites. This study provides a basic understanding of and a quality control guide to the formation uniformity of BFC products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961686PMC
http://dx.doi.org/10.3390/ma14051198DOI Listing

Publication Analysis

Top Keywords

bamboo fiber
12
horizontal density
8
density distribution
8
fiber composite
8
bamboo culm
8
density variation
8
bamboo
5
density
5
bfc
5
panel
5

Similar Publications

Grazing-Induced Habitat Degradation: Challenges to Giant Panda Survival Resulting from Declining Bamboo and Soil Quality.

Animals (Basel)

January 2025

Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.

Grazing is the primary human-induced disturbance affecting giant panda () habitats and has a severe impact on the long-term sustainability of the giant panda population. To address the lack of quantitative studies on grazing's impact on habitat quality, we selected China's most heavily grazed giant panda nature reserve. Utilizing the Maxent model and stoichiometric analysis, we investigated habitat quality degradation caused by grazing and quantified changes in bamboo nutritional quality and soil physicochemical properties.

View Article and Find Full Text PDF

The purpose of this research is to investigate the potential of chemical modification to improve the hydrophobic properties and thermal stability of bamboo fibers and to evaluate the sound absorption performance of raw and modified fibers. To achieve this goal, bamboo fibers were modified using stearic acid coatings and aluminum hydroxide nanoparticles. The results showed that the modification of fibers with stearic acid (STA) can improve the contact angle and hydrophobicity of bamboo fibers, so that for modified fibers with a concentration of 0.

View Article and Find Full Text PDF

Revolutionary bamboo crash barriers utilizing sustainable materials for enhanced road safety.

Sci Rep

January 2025

Department of Mechanical Engineering, Government Engineering College, Barton Hill, Thiruvananthapuram, Kerala, India.

Road accidents are a growing concern worldwide, and crash barriers have significantly reduced the severity of these incidents. In its pursuit of developing an eco-friendly crash barrier, India installed the world's first 200 m bamboo crash barrier, on Bombay-Pune Highway. Although its eco-friendly and recyclable design is commendable, using Bambusa balcooa infused with creosote oil and covered with High-density polyethylene (HDPE) raises substantial health and environmental issues due to the presence of toxic and carcinogenic Polycyclic aromatic hydrocarbons (PAHs).

View Article and Find Full Text PDF

Biological materials, such as bamboo, are naturally optimized composites with exceptional mechanical properties. Inspired by such natural composites, traditional methods involve extracting nanofibers from natural sources and applying them in composite materials, which, however, often results in less ideal mechanical properties. To address this, this study develops a bottom-up nanofiber assembly strategy to create strong fiber-reinforced composite hydrogels inspired by the hierarchical assembly of bamboo.

View Article and Find Full Text PDF

Degradable and cost-effective cellulose fiber-based materials are ideal substitutes for traditional plastics. However, organic additives used to enhance water and oil resistance often contain toxic substances that may migrate into food, posing health risks. In this study, inspired by tree structures, lignin-containing cellulose nanofibers (LCNFs) are used to form a "crown-roots" structure to enhance the water, oil, and gas resistance, as well as mechanical performance of composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!