Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a carbon-nanotube-based neural sensor designed to exploit the electrical sensitivity of an inhomogeneous fractal network of conducting channels. This network forms the active layer of a multi-electrode field effect transistor that in future applications will be gated by the electrical potential associated with neuronal signals. Using a combination of simulated and fabricated networks, we show that thin films of randomly-arranged carbon nanotubes (CNTs) self-assemble into a network featuring statistical fractal characteristics. The extent to which the network's non-linear responses will generate a superior detection of the neuron's signal is expected to depend on both the CNT electrical properties and the geometric properties of the assembled network. We therefore perform exploratory experiments that use metallic gates to mimic the potentials generated by neurons. We demonstrate that the fractal scaling properties of the network, along with their intrinsic asymmetry, generate electrical signatures that depend on the potential's location. We discuss how these properties can be exploited for future neural sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000135 | PMC |
http://dx.doi.org/10.3390/nano11030636 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!