AI Article Synopsis

  • RC structures age over time, leading to performance degradation and cracks, which can be improved with various reinforcement methods.
  • This study focuses on four methods: near-surface mounting (NSM), external prestressing (EP), external bonding (EB), and section enlargement (SE), using fiber-reinforced polymers (FRP) as an alternative to traditional steel reinforcements.
  • The results indicate that NSM(P) exhibits better ductility and stiffness compared to non-strengthened specimens, making it the most effective method among the studied reinforcement techniques.

Article Abstract

Reinforced concrete (RC) structures age with time, which results in performance degradation and cracks. These performance degradations do not recover easily, but a performance higher than the existing structures can be expected through reinforcement. There are various reinforcement methods for RC structures. This study selected four reinforcement methods: near-surface mounting (NSM), external prestressing (EP), external bonding (EB), and section enlargement (SE). In the past, steel bars were often used as reinforcements. However, this study uses fiber-reinforced polymer (FRP), which is an alternative to steel bars owing to its high tensile strength, and its non-corrosive and lightweight properties. It is a basic strengthening material, along with a carbon-fiber-reinforced polymer (CFRP) and glass-fiber-reinforced polymer (GFRP) in bar and sheet forms. Various strengthening materials such as a CFRP, GFRP, and prestressing (PS) strand are applied to the NSM, EP, EB, and SE methods, followed by flexural experiments. In addition, changes in the ductility of the RC structures were examined. The concrete EP and near-surface mounting prestressing (NSM(P)) methods have a stiffness that is almost double the non-strengthened specimen. However, because the EP and EB methods are brittle, the NSM(P) method with ductile behavior is considered the most effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961495PMC
http://dx.doi.org/10.3390/polym13050780DOI Listing

Publication Analysis

Top Keywords

reinforced concrete
8
fiber-reinforced polymer
8
reinforcement methods
8
near-surface mounting
8
steel bars
8
methods
5
structural behavior
4
behavior evaluation
4
evaluation reinforced
4
concrete fiber-reinforced
4

Similar Publications

One of the most critical components of reinforced concrete structures are beam-column joint systems, which greatly affect the overall behavior of a structure during a major seismic event. According to modern design codes, if the system fails, it should fail due to the flexural yielding of the beam and not due to the shear failure of the joint. Thus, a reliable tool is required for the prediction of the failure mode of the joints in a preexisting population of structures.

View Article and Find Full Text PDF

Two identically sized RC beams were fabricated to investigate the effects of explosive loads on the flexural behaviour of Reinforced Concrete (RC) beams. One of the beams was subjected to an explosive load to induce post-explosion damage, and subsequently, both beams underwent flexural capacity testing. Integrating piezoelectric smart aggregates (SAas) within the beams facilitated continuous observation of the damage conditions, allowing for the assessment of internal concrete deterioration from explosive impacts to bending failures.

View Article and Find Full Text PDF

Given the current construction waste accumulation problem, to utilize the resource of red brick solid waste, construction waste red brick was used as a concrete coarse aggregate combined with polypropylene fiber to prepare PPF (polypropylene fiber)-reinforced recycled brick aggregate concrete. Through a cube compression test, axial compression test, and four-point bending test of 15 groups of specimens, the influences of the aggregate replacement rate of recycled brick and the PPF volume on the mechanical properties of recycled brick aggregate concrete reinforced by PPF were studied, and a strength parameter calculation formula was constructed and modified based on the above. Finally, combined with a life cycle assessment (LCA), the carbon emissions of raw materials were analyzed and evaluated.

View Article and Find Full Text PDF

The glass fiber-reinforced polymer (GFRP) materials of wind turbine blades can be recovered and recycled by crushing, thereby solving one of the most perplexing problems facing the wind energy sector. This process yields selectively crushed wind turbine blade (SCWTB), a novel waste that is almost exclusively composed of GFRP composite fibers that can be revalued in terms of their use as a raw material in concrete production. In this research, the fresh and mechanical performance of concrete made with 1.

View Article and Find Full Text PDF

Industrial and construction wastes make up about half of all world wastes. In order to reduce their negative impact on the environment, it is possible to use part of them for concrete production. Using experimental-statistical modeling techniques, the combined effect of brick powder, recycling sand, and alkaline activator on fresh and hardened properties of self-compacting concrete for the production of textile-reinforced concrete was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!