Study of the Seismoelectric Effect of the Second Kind Using Molecular Sensors.

Sensors (Basel)

Laboratory of the Geophysical Research of the Arctic and Continental Margins of the World Ocean, Phystech School of Radio Engineering and Computer Technology, 141700 Dolgoprudny, Russia.

Published: March 2021

The article is devoted to the study of the potential possibilities of using molecular-electronic sensors of seismic waves for field work using the seismoelectric method to explore the hydrocarbon deposits. The introduction provides an analytical review of the current state of research based on data from science magazines and patents. It is shown that at present, seismoelectric effects are at the stage of experimental implementation into the practice of field work for oil and gas geophysical prospecting. Further in the article, theoretical estimates and results of mathematical modeling of the manifestation of seismoelectric (SE) phenomena in the regions of hydrocarbon anomalies are presented, numerical estimates of the values of the seismic and secondary electromagnetic fields are given. The analysis of the results (on a tank and real gas condensate field) showed that the use of molecular-electronic geophones, which have a higher sensitivity and operate in a wider frequency range (up to 0.1 Hz), allows one to obtain higher signal-to-noise ratio. Thus, it has been experimentally established that the use of molecular sensors for recording seismic electric effects when searching for deposits is more preferable when carrying out field work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037436PMC
http://dx.doi.org/10.3390/s21072301DOI Listing

Publication Analysis

Top Keywords

field work
12
molecular sensors
8
study seismoelectric
4
seismoelectric second
4
second kind
4
kind molecular
4
sensors article
4
article devoted
4
devoted study
4
study potential
4

Similar Publications

Interstitial Oxygen-Driven Far-Red/Near-Infrared Emission and Efficiency Enhancement via Heterovalent Cation Substitution in CaWO Phosphors.

Inorg Chem

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Material Science and Engineering, Shandong University, Jinan 250061, P. R. China.

In this work, CaWO (CWO) phosphors were successfully synthesized using a high-temperature solid-state method, exhibiting an anomalous far-red/near-infrared (FR-NIR) emission centered at 685 nm. The origin of this FR-NIR emission is confirmed through Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and heterovalent cationic substitution (Y/Na → Ca). These analyses indicate that interstitial oxygen (O) defects within the lattice are primarily responsible for the FR-NIR emission.

View Article and Find Full Text PDF

Heavy metals are life-threatening pollutions because of their great toxicity, long-term persistence in nature and their bioaccumulation in living organisms. In this work, we performed multivariate curve resolution-alternating least squares analysis of UV-Vis raw spectra received by a colorimetric sensor constructed on mercaptoundecanoic acid functionalized silver nanoparticles (AgNPs@11MUA) to detect Cd, Cu, Mn, Ni, and Zn in water. This combined approach allowed the rapid identification and quantification of multiple heavy metals and showed adequate sensitivity and selectivity, thus representing a promising analytical and computational method for both laboratory and field applications such as environmental safety and public health monitoring.

View Article and Find Full Text PDF

In this work, within the framework of a self-consistent model of arc discharge, a simulation of plasma parameters in a mixture of argon and methane was carried out, taking into account the evaporation of the electrode material in the case of a refractory and non-refractory cathode. It is shown that in the case of a refractory tungsten cathode, almost the same methane conversion rate is observed, leading to similar values in the density of the main methane conversion products (C, C, H) at different values of the discharge current density. However, with an increase in the current density, the evaporation rate of copper atoms from the anode increases, and a jump in the - characteristic is observed, caused by a change in the plasma-forming ion.

View Article and Find Full Text PDF

As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.

View Article and Find Full Text PDF

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Amniotic fluid is a complex and dynamic biological matrix that surrounds the fetus during the pregnancy. From this fluid, is possible to isolate various cell types with particular interest directed towards stem cells (AF-SCs). These cells are highly appealing due to their numerous potential applications in the field of regenerative medicine for tissues and organs as well as for treating conditions such as traumatic or ischemic injuries to the nervous system, myocardial infarction, or cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!