mutations are a revolutionary discovery and represent an important hallmark of myeloproliferative neoplasms (MPN), especially essential thrombocythemia and primary myelofibrosis. To date, several mutations were identified, with only frameshift mutations linked to the diseased phenotype. It is of diagnostic and prognostic importance to properly define the type of mutation and subclassify it according to its structural similarities to the classical mutations, a 52-bp deletion (type 1 mutation) and a 5-bp insertion (type 2 mutation), using a statistical approximation algorithm (AGADIR). Today, the knowledge on the pathogenesis of -positive MPN is expanding and several cellular mechanisms have been recognized that finally cause a clonal hematopoietic expansion. In this review, we discuss the current basis of the cellular effects of mutants and the understanding of its implementation in the current diagnostic laboratorial and medical practice. Different methods of detection are explained and a diagnostic algorithm is shown that aids in the approach to -positive MPN. Finally, contemporary methods joining artificial intelligence in accordance with molecular-genetic biomarkers in the approach to MPN are presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038093 | PMC |
http://dx.doi.org/10.3390/ijms22073371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!