Heparin-induced thrombocytopenia (HIT) is a thrombocytopenia caused by heparin and mediated by an atypical immune mechanism leading to a paradoxical high thrombotic risk, associated with severe morbidity or death. The diagnosis of HIT combines a clinical scoring of pretest probability and laboratory testing. First-line routine tests are antigen binding assays detecting specific antibodies. The most sensitive of these tests have a high HIT-negative predictive value enabling HIT diagnosis to be ruled out when negative. However, HIT-positive predictive value is low, and a functional assay evaluating the pathogenicity of the antibodies should be performed to exclude false-positive results. In contrast to screening assays, functional assays are highly specific but technically challenging, and are thus performed in referral laboratories, where platelet activation is detected using radioactive serotonin (serotonin release assay, SRA) or visually (heparin-induced platelet activation, HIPA). Flow cytometry is a possible alternative. It is, however, currently not widely used, mostly because of the lack of standardization of the published assays. This article describes and discusses the standardization of a HIT flow cytometry assay (HIT-FCA) method, which subsequently led to the development and commercialization of a CE-marked assay (HIT Confirm, Emosis, France) as a suitable rapid HIT functional test.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999851PMC
http://dx.doi.org/10.3390/biomedicines9030296DOI Listing

Publication Analysis

Top Keywords

flow cytometry
12
heparin-induced thrombocytopenia
8
platelet activation
8
hit
6
optimized standardized
4
standardized rapid
4
rapid flow
4
functional
4
cytometry functional
4
functional method
4

Similar Publications

Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.

View Article and Find Full Text PDF

Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.

Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!