A set of five gold complexes with the general formula Au(PR)(C≡C-CH-4-R') (R = PPh, R' = -CHO (1), R = PCy, R' = -CHO (2), R = PPh, R' = -N=CH-CH-2-OH (3), R = PPh, R' = -N=CH-CH-4-OH (4), R = PCy, R' = -N=CH-CH-2-OH (5)) were synthesized and characterized by elemental analysis, H-NMR spectroscopy, P-NMR spectroscopy, and mass spectrometry. The structures of complexes 2 and 5 were determined by X-ray crystallography. The effects of the structural modifications on the protein binding affinities and anticancer activities of the five gold complexes were assessed. Fluorescence quenching experiments to assess binding to human serum albumin (HSA) revealed that the Schiff base complexes (3, 4, and 5) had binding constants that were superior to their parent aldehyde complexes and highlighted the position of the hydroxy group because complex 4 (4-hydroxy) had a binding constant 6400 times higher than complex 3 (2-hydroxy). The anticancer activities of the complexes against the OVCAR-3 (ovarian carcinoma) and HOP-62 (non-small-cell lung) cancer cell lines showed that the Schiff bases (3-5) were more cytotoxic than the aldehyde-containing complexes (1 and 2). Notably, compound 4 had cytotoxic activity comparable to that of cisplatin against OVCAR-3, demonstrating the significance of the para position for the hydroxy group. Molecular docking studies against the enzyme thioredoxin reductase (TrxR) and human serum albumin were conducted, with docking scores in good agreement with the experimental data. The current study highlights how small structural modifications can alter physiochemical and anticancer properties. Moreover, this simple design strategy using the aldehyde group can generate extensive opportunities to explore new gold(I)-based anticancer drugs via condensation, cyclization, or nucleophilic addition reactions of the aldehyde.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066730PMC
http://dx.doi.org/10.3390/pharmaceutics13040461DOI Listing

Publication Analysis

Top Keywords

schiff bases
8
gold complexes
8
structural modifications
8
anticancer activities
8
human serum
8
serum albumin
8
position hydroxy
8
hydroxy group
8
complexes
7
alteration anticancer
4

Similar Publications

A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:

The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).

View Article and Find Full Text PDF

Herein, we developed multifunctional hydrogels formed between soybean protein (SPI)-gallic acid conjugate and oxidized dextran (ODex) via a Schiff base reaction. The effects of ODex on the morphology, structure, and functional properties of the hydrogels were elucidated. The results showed that the crosslinking modes in the hydrogels include hydrogen bonding, Schiff bases, Michael addition, and π-π stacking.

View Article and Find Full Text PDF

Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells.

View Article and Find Full Text PDF

A new hydrated crystalline form of -[()-(4-hy-droxy-phen-yl)methyl-idene]-1-1,2,4-triazol-3-amine and its anti-fungal activity.

Acta Crystallogr E Crystallogr Commun

January 2025

Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint Aubin, 91192, Gif-sur-Yvette, France.

The synthesis, crystal structure, Hirshfeld analysis, and anti-fungal assessment of a new monohydrated Schiff base with a triazole moiety are reported. The structural study revealed the presence of three significant hydrogen bonds (N-H⋯N, O-H⋯N, and O-H⋯O), which contribute to the cohesion of the crystal. These bonds generate two-dimensional layers parallel to the plane, built on the basis of rings with the graph-set motifs (8) and (24).

View Article and Find Full Text PDF

: Triple-negative breast cancer (TNBC) is the most challenging molecular subtype of breast cancer (BC) in clinical practice, associated with a worse prognosis due to limited treatment strategies and its insensitivity to conventional drugs. Zinc is an important trace element for homeostasis, and its Schiff base metal complexes have shown promise in treating advanced tumors. In this study, four new heteroleptic Zn(II) complexes (-) with Schiff bases were synthesized, characterized, and evaluated for their activity in BC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!