It is evident that depletion of interstitial cells and dysfunction of nitric oxide (NO) pathways are key players in development of several gastrointestinal (GI) motility disorders such as diabetic gastroparesis (DGP). One of the main limitations of DGP research is the lack of isolation methods that are specific to interstitial cells, and therefore conducting functional studies is not feasible. The present study aims (i) to differentiate telomerase transformed mesenchymal stromal cells (iMSCs) into platelet-derived growth factor receptor-α-positive cells (PDGFRα-positive cells) using connective tissue growth factor (CTGF) and L-ascorbic acids; (ii) to investigate the effects of NO donor and inhibitor on the survival rate of differentiated PDGFRα-positive cells; and (iii) to evaluate the impact of increased glucose concentrations, mimicking diabetic hyperglycemia, on the gene expression of neuronal nitric oxide synthase (nNOS). A fibroblastic differentiation-induction medium supplemented with connective tissue growth factor was used to differentiate iMSCs into PDGFRα-positive cells. The medium was changed every day for 21 days to maintain the biological activity of the growth factors. Gene and protein expression, scanning electron and confocal microscopy, and flow cytometry analysis of several markers were conducted to confirm the differentiation process. Methyl tetrazolium cell viability, nitrite measurement assays, and immunostaining were used to investigate the effects of NO on PDGFRα-positive cells. The present study, for the first time, demonstrated the differentiation of iMSCs into PDGFRα-positive cells. The outcomes of the functional studies showed that SNAP (NO donor) increased the survival rate of differentiated PDGFRα-positive cells whereas LNNA (NO inhibitor) attenuated these effects. Further experimentations revealed that hyperglycemia produced a significant increase in expression of nNOS in PDGFRα-positive cells. Differentiation of iMSCs into PDGFRα-positive cells is a novel model to conduct functional studies and to investigate the involvement of NO pathways. This will help in identifying new therapeutic targets for treatment of DGP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037384PMC
http://dx.doi.org/10.3390/ijms22073514DOI Listing

Publication Analysis

Top Keywords

pdgfrα-positive cells
36
functional studies
16
cells
13
differentiated pdgfrα-positive
12
nitric oxide
12
growth factor
12
imscs pdgfrα-positive
12
cells novel
8
neuronal nitric
8
oxide synthase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!