Understanding the Interactions between and the Raw-Meat-Processing Environment Isolate in Dual-Species Biofilms via Discovering an Altered Metabolic Profile.

Microorganisms

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Published: March 2021

AI Article Synopsis

  • The study investigates how different bacteria from the Enterobacteriaceae family form dual-species biofilms in raw-meat-processing environments, which increases contamination risk.
  • Crystal violet staining showed that these dual-species biofilms grew significantly larger after 21 hours compared to single-species biofilms, with one species dominating in number.
  • Advanced analysis techniques revealed numerous unique metabolites and metabolic pathways specifically active in the dual-species biofilms, offering insights into how these bacterial interactions influence their growth and behavior.

Article Abstract

In a raw-meat-processing environment, members of the Enterobacteriaceae family can coexist with to form dual-species biofilms, leading to a higher risk of food contamination. However, very little is known about the effect of inter-species interactions on dual-species biofilm formation. The aim of this study was to investigate the interactions between and raw-meat-processing environment isolates of in dual-species biofilms, by employing an untargeted metabolomics tool. Crystal violet staining assay showed that the biomass of the dual-species biofilm significantly increased and reached its maximum after incubation for 21 h, compared with that of single species grown alone. The number of in the dual-species biofilm was significantly higher than that of . Field emission scanning electron microscopy (FESEM) revealed that both species were evenly distributed, and were tightly wrapped by extracellular polymeric substances in the dual-species biofilms. Ultra-high-pressure liquid chromatography equipped with a quadrupole-time-of-flight mass spectrometer (UHPLC-Q-TOF MS) analysis exhibited a total of 8184 positive ions, and 6294 negative ions were obtained from all test samples. Multivariate data analysis further described altered metabolic profiling between mono- and dual-species biofilms. Further, 18 and 21 different metabolites in the dual-species biofilm were screened as biomarkers by comparing the mono-species biofilms of and , respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were exclusively upregulated in the dual-species biofilm included ABC transporters, amino acid metabolism, and the two-component signal transduction system. Our results contribute to a better understanding of the interactive behavior of inter-species biofilm communities, by discovering altered metabolic profiling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064066PMC
http://dx.doi.org/10.3390/microorganisms9040672DOI Listing

Publication Analysis

Top Keywords

dual-species biofilms
20
dual-species biofilm
20
raw-meat-processing environment
12
altered metabolic
12
dual-species
10
interactions raw-meat-processing
8
discovering altered
8
metabolic profiling
8
biofilms
6
biofilm
6

Similar Publications

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Relationships Between and the Rest of the World-Analysis of Dual-Species Biofilms and Infections.

Pathogens

January 2025

Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1j, 20-708 Lublin, Poland.

In this study, we investigated the interactions between and , , , and in mixed infections. Initially, these interactions were studied qualitatively and quantitatively in dual-species biofilms formed in vitro. The MTT assays, determination of the total CFU/mL, and SEM analysis showed that interacted differentially with the other spp.

View Article and Find Full Text PDF

This study evaluated the impact of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) on burn wound with dual-species biofilm. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S.

View Article and Find Full Text PDF

Antimicrobial efficacy of alternative root canal disinfection strategies: An evaluation on multiple working models.

Biomed Pharmacother

January 2025

Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB - USP), Bauru, São Paulo, Brazil. Electronic address:

Researching disinfection strategies is pivotal because effectively eliminating bacteria and their byproducts during root canal treatment (RCT) remains a challenge. This study investigated the antimicrobial efficacy of natural antimicrobial compounds, propolis (PRO) and copaiba oil-resin (COR), compared to conventional agents in Endodontics. Antimicrobials were tested against endodontic pathogens via macrodilution with standardized inoculums to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC).

View Article and Find Full Text PDF

Introduction: Eradication of residual biofilm from root canal dentine is critical for the success of regenerative endodontic procedures (REPs).

The Aim Of The Study: To evaluate the influence of ultrasonically activated irrigants in concentrations used for REPs for removal of dual-species biofilm from three-dimensionally printed tooth models with attached dentine samples.

Methodology: Seventy-two three-dimensionally printed teeth models were fabricated with a standardized slot in the apical third of the root to ensure a precise fit with a human root dentine specimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!