Experimental Evaluation of Aerosol Production after Dental Ultrasonic Instrumentation: An Analysis on Fine Particulate Matter Perturbation.

Int J Environ Res Public Health

Hygiene and Epidemiology Unit, Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.

Published: March 2021

Aerosol production represents a major concern during the majority of dental procedures. The aim of the present study is to investigate the dynamics of aerosol particles after 15 min of continuous supragingival ultrasonic instrumentation with no attempt of containment through particle count analysis. Eight volunteers were treated with supragingival ultrasonic instrumentation of the anterior buccal region. A gravimetric impactor was positioned 1 m away and at the same height of the head of the patient. Particles of different sizes (0.3-10 µm) were measured at the beginning of instrumentation, at the end of instrumentation (EI), and then every 15 min up to 105 min. The 0.3-µm particles showed non-significant increases at 15/30 min. The 0.5-1-µm particles increased at EI ( < 0.05), and 0.5 µm remained high for another 15 min. Overall, all submicron aerosol particles showed a slow decrease to normal values. Particles measuring 3-5 µm showed non-significant increases at EI. Particles measuring 10 µm did not show any increases but a continuous reduction ( < 0.001 versus 0.3 µm, < 0.01 versus 0.5 µm, and < 0.05 versus 1-3 µm). Aerosol particles behaved differently according to their dimensions. Submicron aerosols peaked after instrumentation and slowly decreased after the end of instrumentation, whilst larger particles did not show any significant increases. This experimental study produces a benchmark for the measurement of aerosol particles during dental procedures and raises some relevant concerns about indoor air quality after instrumentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036889PMC
http://dx.doi.org/10.3390/ijerph18073357DOI Listing

Publication Analysis

Top Keywords

aerosol particles
16
ultrasonic instrumentation
12
particles
10
aerosol production
8
instrumentation
8
dental procedures
8
supragingival ultrasonic
8
non-significant increases
8
particles measuring
8
versus µm
8

Similar Publications

Sterilization and Filter Performance of Nano- and Microfibrous Facemask Filters - Electrospinning and Restoration of Charges for Competitive Sustainable Alternatives.

Macromol Rapid Commun

December 2024

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland.

Facemask materials have been under constant development to optimize filtration performance, wear comfort, and general resilience to chemical and mechanical stress. While single-use polypropylene meltblown membranes are the established go-to material for high-performing mask filters, they are neither sustainable nor particularly resistant to sterilization methods. Herein an in-depth analysis is provided of the sterilization efficiency, filtration efficiency, and breathing resistance of selected aerosol filters commonly implemented in facemasks, with a particular focus on the benefits of nanofibrous filters.

View Article and Find Full Text PDF

This work introduces CAECENET, a new system capable of automatically retrieving columnar and vertically-resolved aerosol properties running the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm using sun-sky photometer (aerosol optical depth, AOD; and sky radiance measurements) and ceilometer (range corrected signal; RCS) data as input. This method, so called GRASPpac, is implemented in CAECENET, which assimilates sun-sky photometers data from CÆLIS database and ceilometer data from ICENET database (Iberian Ceilometer Network). CAECENET allows for continuous and near-real-time monitoring of both vertical and columnar aerosol properties.

View Article and Find Full Text PDF

Comprehensive air quality assessment including non-targeted approaches in primary schools from Spain.

Chemosphere

December 2024

Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Av. Catalunya, 46020, Valencia, Spain.

This work aims to establish a strategy to comprehensively assess the indoor air quality in schools including the analysis of chemical pollutants, bio-aerosols like fungi, bacteria and respiratory viruses and the identification of volatile and semi-volatile organic compounds applying non-targeted approaches. For this, a pilot study was performed in four primary schools from Spain, located in different urban and rural areas during different seasons. Common indoor pollutants, like CO NO, O, CO, particulate matter (PM, PM), ultrafine particles (UFP), total volatile organic compounds (TVOCs), and formaldehyde (HCHO), were assessed in terms of maximum recommended levels, daily variations, seasonality, and school location.

View Article and Find Full Text PDF

Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes.

View Article and Find Full Text PDF

Aerosol droplets are unique microcompartments containing microscopic amounts of material and exhibiting surprising chemical reactivity. Although a diverse set of tools exists to characterize the chemical composition of individual submicron particles in air, comparatively fewer approaches can chemically analyze individual, airborne picolitre droplets. We describe a novel approach for mass spectrometric analysis of individual aqueous picolitre droplets (∼2-180 pL volume) containing down to ∼1 pg analyte mass per droplet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!