Wearable electronics are playing an important role in the health care industry. Wearable sensors are either directly attached to the body surface or embedded into worn garments. Textile-based batteries can help towards development of body conformal wearable sensors. In this letter, we demonstrate a 2D planar textile-based primary AgO-Zn battery fabricated using the stencil printing method. A synthetic polyester woven fabric is used as the textile substrate and polyethylene oxide material is used as the separator. The demonstrated battery achieves an areal capacity of 0.6 mAh/cm with an active electrode area of 0.5 cm × 1 cm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003682 | PMC |
http://dx.doi.org/10.3390/s21062178 | DOI Listing |
Lab Chip
January 2025
Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
Wearable microfluidic sweat sensors could play a major role in the future of monitoring health and wellbeing. Sweat contains biomarkers to monitor health and hydration status, and it can provide information on drug intake, making it an interesting non-invasive alternative to blood. However, sweat is not created in excess, and this requires smart sweat collection strategies to handle small volumes.
View Article and Find Full Text PDFFuture Cardiol
January 2025
BridgeBio Pharma, Inc., San Francisco, CA, USA.
Introduction: The 6-minute walk test (6MWT) is used to assess submaximal exercise capacity in clinical trials. Conducting the 6MWT can be challenging when patients cannot visit the clinic due to physical/travel limitations. This pilot study assessed the feasibility of conducting the 6MWT using wearable sensors for patients with transthyretin amyloid cardiomyopathy.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Faculty of Physical Education-Abo Qir, Alexandria University, Alexandria, Egypt.
Objective: This study investigated upper limb kinematics and muscle co-activation in wheelchair tennis players during the forehand stroke. By analyzing linear and angular kinematic variables alongside muscle co-activation patterns, the study aimed to provide insights into the biomechanical mechanisms supporting forehand stroke performance.
Method: Fifteen professional male wheelchair tennis players (height: 163.
Mater Horiz
January 2025
Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
Intelligent electronic textiles have important application value in the field of wearable electronics due to their unique structure, flexibility, and breathability. However, the currently reported electronic textiles are still challenged by issues such as their biocompatibility, photothermal conversion, and electromagnetic wave contamination. Herein, a multifunctional biomass-based conductive coating was developed using natural carboxymethyl starch (CMS), dopamine and polypyrrole (PPy) and then further employed for constructing multifunctional intelligent electronic textiles.
View Article and Find Full Text PDFInternet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!