The global dissemination of carbapenemase-producing (CPE) is a major concern in public health. Due to the existence of the diversity of carbapenemases, development of an easily available, cost-effective multiplex detection assay for CPE is required worldwide. Using clinically available and reliable equipment, COBAS z480 (Roche Diagnostics K.K., Tokyo, Japan), we developed a multiplex real-time PCR assay for the detection of two combinations of carbapenemases; first, , , and (Set 1), and second, , , and (Set 2). We constructed standard curves for each carbapenemase gene using serial dilutions of DNA standards, then applied reference or clinical isolates with each carbapenemase gene to this assay. The multiplex assay showed satisfactory accuracy to detect CPE genes, with the correlation coefficients of greater than 0.99 for all genotypes. The assay appropriately differentiated the reference or clinical strains harboring each carbapenemase gene without cross reactivity. Lastly, the assay successfully detected multiple genes without false-positive reactions by applying six clinical isolates carrying both NDM and OXA-48-like carbapenemase genes. Major advantages of our assay include multiplicity, simple operation, robustness, and speed (1 h). We believe that the multiplex assay potentially contributes to early diagnosis of CPE with a diverse genetic background.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999841 | PMC |
http://dx.doi.org/10.3390/pathogens10030276 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic. Electronic address:
Public transport represents a potential site for the transmission of resistant pathogens due to the rapid movement of large numbers of people. This study aimed to investigate the bacterial contamination of frequently touched surfaces in the public transport system operating in the proximity of the biggest Czech hospital during the coronavirus pandemic despite extensive cleaning and disinfection efforts. In June and September 2020, samples from the metro trains, ground transport and stationary objects were collected, enriched and cultured.
View Article and Find Full Text PDFCureus
December 2024
Medical Microbiology, Vinayaka Mission's Kirupananda Variyar Medical College and Hospital, Salem, IND.
Introduction The antimicrobial resistance of is variable and is influenced by both geographic location and regional antibiotic use. The overuse of antibiotics, especially in hospitalised patients, suppresses the growth and persistence of drug-resistant bacteria. This study aimed to detect the prevalence of carbapenem-resistant and the genes responsible for the resistance.
View Article and Find Full Text PDFZhonghua Xue Ye Xue Za Zhi
November 2024
Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
This study aimed to analyze the homology between carbapenem-resistant organisms (CRO) intestinal colonization strains and bloodstream infection (BSI) strains in patients undergoing hematopoietic stem cell transplantation (HSCT), confirming the clinical use of the real-time rectal swab Xpert Carba-R assay, and investigate its feasibility in early warning of BSI. Drug-resistant strains obtained from rectal swabs and blood culture samples of patients undergoing the same HSCT from January 2021 to December 2021 were collected and analyzed. The homology of the CRO intestinal colonization and BSI strains was confirmed using strain identification, antimicrobial resistance phenotyping, whole genome sequencing (WGS), multilocus sequence typing (MLST), and carbapenemase type identification.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
Carbapenem-resistant complex (CR-ECC), which is rapidly increasing as the cause of nosocomial infections, has limited treatment options. The aim of this study is to investigate the microbiological and clinical traits and molecular epidemiology of isolates of CR-ECC and provide guidance for antibiotic selection in clinical practice. Clinical CR-ECC isolates (ertapenem MIC ≥ 2 mg/L) were collected from 2021 to 2022.
View Article and Find Full Text PDFmSphere
December 2024
Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
particularly the group, is a major cause of nosocomial infections, and carbapenem-resistant spp. are important human pathogens. We collected 492 spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!